User's Guide # Fireface UCX The most powerful portable FireWire® and USB audio interface! TotalMix[™] $\textbf{SyncAlign}^{^{\text{TM}}}$ $\mathbf{Z} \mathbf{I} \mathbf{N} \mathbf{A}^{\mathsf{TM}}$ $\textbf{SyncCheck}^{^{\text{TM}}}$ **SteadyClock**TM USB 2.0 / FireWire 400 Digital I/O System 8 + 8 + 2 Channels Analog / ADAT / SPDIF Interface 24 Bit / 192 kHz Digital Audio 36 x 18 Matrix Router 2 x MIDI I/O Stand-Alone Operation Class Compliant Operation MIDI Remote Control | Þ | Important Safety Instructions | 6 | |-----------------------|---|----------------------| | Þ | General | | | 1
2
3
4
5 | Introduction Package Contents System Requirements Brief Description and Characteristics First Usage - Quick Start 5.1 Connectors – Controls - Display 5.2 Quick Start | 8
8
8 | | Þ | Installation and Operation - Windows | | | 6 | Hardware, Driver and Firmware Installation 6.1 Hardware and Driver Installation | 12 | | 7 | Configuring the Fireface 7.1 Settings Dialog – General | 13 | | 8 | Operation and Usage 8.1 Playback | 16
18
19
19 | | 9 | 9.1 General | 22 | | 10
11
12 | Using more than one Fireface UCXDIGICheck Windows | 23
24 | # ▶ Installation and Operation - Mac OS X | | rdware, Driver and Firmware Installation | | |---------|--|----| | 13.1 | Hardware and Driver Installation | 28 | | | De-installing the Drivers | | | | Firmware Update | 29 | | 14 Co | nfiguring the Fireface | | | 14.1 | Settings Dialog | 29 | | | Clock Modes - Synchronization | 31 | | | IC OS X FAQ | | | 15.1 | MIDI doesn't work | 32 | | 15.2 | Repairing Disk Permissions | 32 | | 15.3 | Supported Sample Rates | 32 | | 15.4 | Channel Count under Core Audio | 32 | | 15.5 | Various Information | 33 | | 16 Us | ing more than one Fireface | 33 | | | GICheck Mac | | | | tline – Troubleshooting | | | | - | | | ▶ Input | s and Outputs | | | 19 An | alog Inputs | | | 19.1 | Line Rear | 38 | | 19.2 | Microphone / Line Front | 38 | | 19.3 | Instrument / LineFront | 39 | | 20 An | alog Outputs | | | | Line | 40 | | | Headphones / Line Out | | | | | | | 21.1 | gital Connections ADAT | 41 | | 21.2 | SPDIF | | | 21.3 | | | | | ord Clock | | | | Word Clock Input and Output | 43 | | 22.2 | Technical Description and Background | 44 | | | Cables and Termination | | | | General Operation | | | | | | | Stand | d-Alone Operation | | | | eration and Usage | | | | General | | | 23.2 | Front Panel Operation | | | 23.3 | Class Compliant Mode | 49 | | | amples | | | 24.1 | 8-Channel AD/DA Converter | | | 24.2 | 2-Channel Mic Preamp | | | 24.3 | Monitor Mixer | | | 24.4 | Digital Format Converter | | | 24.5 | Analog/Digital Routing Matrix | | | 24.6 | External Interface for iPhone/iPad | 50 | # ▶ TotalMix FX | 25 | | ΚO | uting and Monitoring | | |----|------------|----|--|-----------| | | 25. | | Overview | | | | 25. | 2 | The User Interface | .54 | | | 25. | 3 | The Channel | 55 | | | | 25 | 3.1 Settings | .57 | | | | 25 | 3.2 Equalizer | | | | | 25 | 3.3 Dynamics | | | | 25. | 4 | Section Control Room | .61 | | | 25. | 5 | The Control Strip | .62 | | | | 25 | 5.1 View Options | .63 | | | | 25 | 5.2 Snapshots - Groups | .64 | | | | | 5.3 Channel Layout – Layout Presets | | | | | 25 | 5.4 Scroll Location Markers | | | | 25. | 6 | Reverb and Echo | | | | 25. | 7 | Preferences | .70 | | | | 25 | 7.1 Store for Current or All Users (Windows) | | | | 25. | 8 | Settings | | | | | | 8.1 Mixer Page | | | | | _ | 8.2 MIDI Page | | | | | | 8.3 OSC Page | | | | | 25 | 8.4 Aux Devices | | | | 25. | | Hotkeys and Usage | .76 | | | | | Menu Options | .77 | | 26 | | | e Matrix | | | | 26. | | Overview | | | | | .2 | Elements of the Matrix View | | | | 26. | | Usage | .78 | | 27 | | | os and Tricks | | | | | .1 | ASIO Direct Monitoring (Windows) | .79 | | | 27. | | Copy a Submix | | | | 27. | | Delete a Submix | | | | 27. | | Doubling the Output Signal | | | | 27. | - | Recording a Submix - Loopback | | | | 27. | | MS Processing | .81 | | 28 | | | DI Remote Control | 00 | | | 28. | | Overview | | | | 28. | | Mapping | | | | 28. | | Setup | | | | 28.
28. | | Operation | .ბპ
ი⊿ | | | | | MIDI Control | | | | 28. | - | Stand-Alone MIDI Control | | | | 28. | - | Loopback Detection | | | | 28. | .0 | OSC (Open Sound Control) | .0/ | # ▶ Class Compliant Mode | 29 | (| General | 90 | |----|--------------|-------------------------------|----| | 30 | | System Requirements | | | 31 | | Operation | | | | 31.1 | - | | | | 31.2 | | | | 32 | - | Supported Inputs and Outputs | | | 33 | | Front Panel Operation | | | 34 | | Audio Routing and Processing | 95 | | 35 | | Setups | | | | | - - | | | Þ | Tec | chnical Reference | | | | _ | Facilities I Owner! Continue | | | 36 | | Technical Specifications | ^ | | | 36.2
36.2 | | | | | 36.3 | | | | | 36.4 | | | | | 36.5 | | | | | 36.6 | | | | 37 | | Fechnical Background | UC | | 31 | 37. | | ი1 | | | 37.2 | | | | | 37.3 | , | | | | 37.4 | | | | | 37.5 | | | | | 37.6 | | | | | 37.7 | | | | | 37.8 | | | | 38 | [| Diagrams | | | | 38.1 | 1 Block Diagram Fireface UCX1 | 07 | | | 38.2 | | | | | | | | | Þ | Mis | scellaneous | | | 39 | , | Accessories1 | 10 | | 40 | | Warranty 1 | | | 41 | | Appendix1 | | | 42 | I | Declaration of Conformity1 | 12 | # **Important Safety Instructions** # **ATTENTION!** Do not open chassis No user serviceable parts inside. Refer service to qualified service personnel. To reduce the risk of fire or electric shock do not expose this device to rain or moisture. Prevent moisture and water from entering the device. Never leave a pot with liquid on top of the device. Do not use this product near water, i. e. swimming pool, bathtub or wet basement. Danger of condensation inside – don't turn on before the device has reached room temperature. #### Installation Surface may become hot during operation – ensure sufficient ventilation. Avoid direct sun light and do not place it near other sources of heat, like radiators or stoves. When mounting in a rack, leave some space between this device and others for ventilation. Unauthorized servicing/repair voids warranty. Only use accessories specified by the manufacturer. Read the manual completely. It includes all information necessary to use and operate this device. # **User's Guide** # Fireface UCX General #### 1. Introduction Thank you for choosing the Fireface UCX. This unique audio system is capable of transferring analog and digital audio data directly to a computer from practically any device. The latest Plug and Play technology guarantees a simple installation, even for the inexperienced user. The numerous unique features and well thought-out configuration dialog puts the Fireface UCX at the very top of the range of computer-based audio interfaces. The package contains drivers for Windows XP / Vista / 7 / 8 and Mac OS X x86 (Intel). Our high-performance philosophy guarantees maximum system performance by executing as many functions as possible not in the driver (i.e. the CPU), but within the audio hardware. # 2. Package Contents - Fireface UCX - Cable USB 2.0, 1.8 m (6 ft) - MIDI breakout cable - Power supply - Manual - RME Driver CD - 1 optical cable (TOSLINK), 2 m (6.6 ft) # 3. System Requirements - Windows XP SP2 or up, Intel Mac OS X (10.6 or up) - 1 x OHCl compatible FireWire Port 400 (1394a), FireWire 800 (1394b) via cable adapter or - 1 x USB 2.0 port - For USB: Computer with at least Pentium Core 2 Duo CPU # 4. Brief Description and Characteristics - All settings can be changed in real-time - Buffer sizes/latencies from 48 up to 8192 samples selectable - 4 channels 96 kHz/24 bit Record/Playback via ADAT optical (S/MUX) - · Clock modes slave and master - Automatic and intelligent master/slave clock control - Unsurpassed Bitclock PLL (audio synchronization) in ADAT mode - SteadyClock: Jitter-immune, super-stable digital clock - DDS technology for free setting of the sample rate - SyncAlign guarantees sample aligned and never swapping channels - · SyncCheck tests and reports the synchronization status of input signals - TotalMix for latency-free submixes and perfect ASIO Direct Monitoring - TotalMix: 648 channel mixer with 46 bit internal resolution - TotalMix FX: 3-band EQ, Low Cut, Reverb, Echo, Compressor, Expander, Auto Level - 2 x MIDI I/O, 32 channels high-speed Low-Jitter MIDI - 1 x Hi-power headphone output - DIGICheck DSP: Level meter in hardware, peak and RMS calculation # 5. First Usage - Quick Start # 5.1 Connectors - Controls - Display The front of the Fireface UCX features instrument, line and microphone inputs, a stereo line/headphone output, a rotary encoder with push functionality, a 7 segment display, and several status and MIDI LEDs. The Neutrik combo jacks of the **Mic/Line** inputs can be used via XLR and 1/4" TRS plugs. Both inputs display overload (CLIP), signal presence (SIG) and phantom power (48V) via green, red and yellow LEDs. Inputs 3/4, **INST/LINE**, accept both a balanced line signal as well as an unbalanced instrument signal via 1/4" TRS plug. The **rotary encoder** serves to set the input and output levels directly at the unit. This is not only useful in stand-alone operation, but also when adjusting the monitor volume. Pushing the knob changes the encoder from CHANNEL to LEVEL mode and back. Pushing the knob repeatedly gives quick access to PH (Phones) for a fast access of the main volume control. The **State LEDs** (WC, SPDIF, ADAT) indicate a valid input signal separately for each digital input. Additionally, RME's exclusive *SyncCheck* indicates if one of these inputs is locked, but not synchronous to the others, in which case the LED will flash. See also chapter 8.8/14.2, Clock Modes - Synchronization. The red **HOST** LED lights up
when the Fireface UCX has been switched on. It operates as error LED, in case the USB or FireWire connection hasn't been initialised yet, or has been interrupted (error, cable not connected etc.). The yellow **MIDI** LEDs indicate MIDI data received or sent, separately for both inputs and outputs. **Phones** is a low impedance line output of highest quality. It provides a sufficient and undistorted volume even when used with headphones. The rear panel of the Fireface UCX features four analog inputs, six analog outputs, the power socket, and all digital inputs and outputs. **SPDIF I/O** coaxial (RCA): AES/EBU compatible. The Fireface UCX accepts the commonly used digital audio formats, SPDIF as well as AES/EBU. ADAT I/O (TOSLINK): The unit automatically detects SPDIF or ADAT input signals. The optical output can operate as ADAT or SPDIF output, depending on the current setting in the Settings dialog. **Word Clock** I/O (BNC): Termination for the Word Clock input (75 Ohms) can be activated in the Settings dialog. MIDI I/O: Provides two MIDI inputs and outputs via the included breakout cable. **Remote.** Mini-DIN. Connector for the optional remote controls with Volume, Store, Dim and Recall functions. **USB 2.0**: USB socket for connection to the computer. FW 400. 6-pin FireWire socket for connection to the computer. POWER (switch): Turns the Fireface UCX on and off. **Socket** for power connection. The included hi-performance switch mode power supply makes the Fireface operate in the range of 100V to 240V AC. It is short-circuit-proof, has an integrated line-filter, is fully regulated against voltage fluctuations, and suppresses mains interference. #### 5.2 Quick Start After the driver installation (chapter 6 / 13) connect the TRS jacks or the XLR inputs with the analog signal source. The input sensitivity of the rear inputs can be changed in TotalMix (Input Channel Settings, Level), assuring the highest signal to noise ratio will be achieved. Also try to achieve an optimum input level by adjusting the source itself. Raise the source's output level until the peak level meters in TotalMix reach about –3 dB. The analog line inputs of the Fireface UCX can be used with +4 dBu and -10 dBV signals. The electronic input stage can handle balanced (XLR, TRS jacks) and unbalanced (TS jacks) input signals correctly. The front's inputs signal level can be optimized using the Fireface's rotary encoder. A Signal LED and a Clip LED help to find the correct gain value. The Fireface's digital outputs provide SPDIF (AES/EBU compatible) and ADAT optical signals at the corresponding ports. On the analog playback side (the DA side), a coarse adjustment of the analog output level at the rear jacks is available in TotalMix (Output Channel Settings, Level). The output level of channels 1 to 8 is also available on the front via the rotary encoder. Output 7/8, called Phones, is a very low impedance type, which can also be used to connect headphones. The Fireface UCX remembers all settings, and loads these automatically when switched on. Additionally the current state can be stored in and loaded from 6 different memory slots, called Setups. With this, the Fireface UCX can be used stand-alone after setting it up accordingly, replacing lots of dedicated devices (see chapter 24). # **User's Guide** # Fireface UCX ▶ Installation and Operation – Windows # 6. Hardware, Driver and Firmware Installation #### 6.1 Hardware and Driver Installation To simplify installation it is recommended to first install the drivers before the unit is connected to the computer. But it will also work the other way round. Insert the RME Driver CD into your CD-ROM drive. The driver installer is located in the directory **\Fireface_USB** or **\Fireface_FW**. Start *rmeinstaller.exe* and follow the instructions of the installer. After installation connect computer and UCX using a USB or FireWire cable. Windows detects the new hardware as **Fireface UCX** and installs the drivers automatically. After a reboot, the icons of TotalMix FX and Settings dialog appear in the notification area. **Driver Updates** do not require to remove the existing drivers. Simply install the new driver over the existing one. <u>Note</u>: FireWire and USB can be connected at the same time, but it is not recommended. Upon start of the computer the port that becomes active first will be used. With no port active the unit searches on both USB and FireWire until it finds an active one. Possible reasons why a Fireface is not found automatically: - The USB or FireWire port is not active in the system (check in Device Manager) - The USB or FireWire cable is not, or not correctly inserted into the socket # 6.2 De-installing the Drivers A de-installation of the driver files is not necessary – and not supported by Windows anyway. Thanks to full Plug & Play support, the driver files will not be loaded after the hardware has been removed. If desired these files can then be deleted manually. Unfortunately Windows Plug & Play methods do not cover the additional autorun entries of TotalMix, the Settings dialog, and the registration of the ASIO driver. These entries can be removed from the registry by a software de-installation request. This request can be found (like all de-installation entries) in *Control Panel*, *Software*. Click on the entry 'RME Fireface'. #### 6.3 Firmware Update The Flash Update Tool updates the firmware of the Fireface UCX to the latest version. It requires an already installed driver. Start the program **fut_usb.exe**. The Flash Update Tool displays the current revision of the Fireface firmware, and whether it needs an update or not. If so, then simply press the 'Update' button. A progress bar will indicate when the flash process is finished (Verify Ok). After the update the unit needs to be reset. This is done by powering down the unit for a few seconds. A reboot of the computer is not necessary. When the update unexpectedly fails (status: failure), the unit's Safety BIOS will be used from the next boot on, the unit stays fully functional. The flash process should then be tried again. # 7. Configuring the Fireface # 7.1 Settings dialog - General Configuration of the Fireface UCX is done via its own settings dialog. The panel 'Settings' can be opened: by clicking on the fire symbol in the Task Bar's system tray The mixer of the Fireface UCX, TotalMix, can be opened: · by clicking on the double arrow symbol in the Task Bar's system tray The hardware of the Fireface UCX offers a number of helpful, well thought-of practical functions and options which affect how the card operates - it can be configured to suit many different requirements. The following is available in the 'Settings' dialog: - Latency - · Operation of the DSP - Configuration of the digital I/Os - Current sample rate - Synchronization behaviour - State of input and output Any changes made in the Settings dialog are applied immediately - confirmation (e.g. by clicking on OK or exiting the dialog) is not required. However, settings should not be changed during playback or record if it can be avoided, as this can cause unwanted noises. Also, please note that even in 'Stop' mode, several programs keep the recording and playback devices open, which means that any new settings might not be applied immediately. The tab **About** includes information about the current driver and firmware version of the Fireface UCX plus two more options: # **Lock Registry** Default: off. Checking this option brings up a dialog to enter a password. Changes in the Settings dialog are no longer written to the registry. As the settings are always loaded from the registry when starting the computer, this method provides an easy way to define an initial state of the Fireface UCX. **Enable MMCSS for ASIO** activates support with higher priority for the ASIO driver. Note: At this time, activating this option seems to be useful only with the latest Cubase/Nuendo at higher load. With other software this option can decrease performance. The change becomes active after an ASIO reset. Therefore it is easy to quickly check which setting works better. #### **Buffer Size** The setting *Buffer Size* determines the latency between incoming and outgoing ASIO and WDM data, as well as affecting system stability (see chapter 9.1). **Errors** does not refer to buffer errors, but USB and FireWire transmission errors. The display will be reset on any start of a playback/record. More information can be found in chapter 37.3 / 37.4. #### **Output Format** #### Word - Single Speed The word clock output signal usually equals the current sample rate. Selecting *Single Speed* causes the output signal to always stay within the range of 32 kHz to 48 kHz. So at 96 kHz and 192 kHz sample rate, the output word clock is 48 kHz. #### Optical The optical TOSLINK output can operate as ADAT or SPDIF output. The Channel Status is fixed to Consumer state. Note: The optical input detects the incoming format automatically, see *Input Status*. #### **SPDIF** The coaxial SPDIF output can have the Channel Status Consumer or Professional. For further details please refer to chapter 21.2. #### **Options** #### DSP - EQ+D for Record Switches EQ and Dynamics of all input channels into the recording path. In case Loopback has been activated the EQ and Dynamics of the Output channel are within the recording path. See also chapter 27.5. #### SPDIF In - TMS TMS activates the transmission of Channel Status data and Track Marker information from the SPDIF input signal. #### **Word In - Termination** Checking this option terminates the word clock input internally with 75 Ohms. #### **Clock Mode** #### Sample Rate Sets the currently used sample rate. Offers a central and comfortable way of configuring the sample rate of all WDM devices to the same value, as since Vista the audio software is no longer allowed to set the sample rate. However, an ASIO program can still set the sample rate by itself.
During record/playback the selection is greyed out, so no change is possible. #### **Clock Source** The unit can be configured to use its own clock (Internal = Master), or one of the input signals (Word, SPDIF coax., Optical In). If the selected source isn't available (Input Status No Lock), the unit will change to the next available one (this behaviour is called AutoSync). If none is available then the internal clock is used. The current clock source is displayed as *Current*. #### Pitch More information on Pitch is available in chapter 7.2. #### **Input Status** Indicates for each input (Word, ADAT/SPDIF optical, SPDIF Coax.) whether there is a valid signal (Lock, No Lock), or if there is a valid *and* synchronous signal (Sync). The third column shows the sample frequency detected by the hardware (coarse recognition, 32 kHz, 44.1 kHz, 48 kHz etc.). In *Clock Mode* the clock reference is shown. See also chapter 37.1. #### **Bandwidth (only for the FireWire driver)** Allows to reduce the amount of bandwidth used on the FireWire bus. See chapter 37.4. All channels (default) activates all 18 input and output channels. Analog +SPDIF + ADAT 1-4 disables channels 15–18 (from ADAT). Analog + SPDIF activates all 8 analog channels plus SPDIF. Analog activates only the eight analog channels. # 7.2 Settings Dialog - Pitch Usually soundcards and audio interfaces generate their internal clock (master mode) by a quartz. Therefore the internal clock can be set to 44.1 kHz or 48 kHz, but not to a value in between. SteadyClock, RME's sensational Low Jitter Clock System, is based on a Direct Digital Synthesizer (DDS). This superior circuitry can generate nearly any frequency with highest precision. DDS has been implemented into the Fireface with regard to the needs of professional video applications, as well as to maximum flexibility. The section Pitch includes both a list of typical video frequencies (so called pull up/pull down at 0.1% and 4%) and a fader to freely change the basic sample rate in steps of 1 Hz (!) over a range of +/- 5%. The Pitch function requires the Fireface to be in clock mode Master! The frequency setting will only be applied to this one specific Fireface! Changing the sample rate during record/playback often results in a loss of audio, or brings up warning messages of the audio software. Therefore the desired sample rate should be set at least coarsely before starting the software. #### Coarse Coarse modification in steps of 50 Hz is done by clicking with the mouse to the left and right of the fader knob. ## **Fine** Fine modification in steps of 1 Hz is done by using the left/right cursor keys. # Reset Ctrl key plus left mouse click. #### Application examples Pitch allows for a simultaneous change of speed and tune during record and playback. From alignment to other sources up to creative effects – everything is possible. Pitch enables you to intentionally de-tune the complete DAW. This way, the DAW can match instruments which have a wrong or unchangeable tuning. Pitch allows for the change of the sample rate of all WDM devices at the same time. Since Vista this is no longer possible via the audio program. Changing the sample rate from the Settings dialog solves this problem. As the change within the system requires some time, record/playback should not be started immediately, but only after at least 5 seconds after a change. **Tip:** the current CPU load can be used to determine if the audio subsystem has finished the reconfiguration. # 8. Operation and Usage #### 8.1 Playback The Fireface UCX can play back audio data in supported formats only (sample rate, bit resolution). Otherwise an error message appears (for example at 22 kHz and 8 bit). In the audio application being used, Fireface must be selected as output device. This can often be found in the *Options, Preferences* or *Settings* menus under *Playback Device, Audio Devices, Audio* etc. We strongly recommend switching all system sounds off (via >Control Panel /Sounds<). Also Fireface should not be the *Preferred Device* for playback, as this could cause loss of synchronization and unwanted noises. If you feel you cannot do without system sounds, you should use on-board sound or any cheap sound card and select this one as *Preferred Device* in >Control Panel /Multimedia /Audio< or >Control Panel /Sound /Playback<. This screenshot shows a typical configuration dialog of a (stereo) wave editor. Audio data is sent to an analog or digital port, depending on which has been selected as playback device. Increasing the number and/or size of audio buffers may prevent the audio signal from breaking up, but also increases latency i.e. output is delayed. For synchronized playback of audio and MIDI (or similar), be sure to activate the checkbox 'Get position from audio driver'. #### Note on Windows Vista/7/8: Since Vista the audio application can no longer control the sample rate under WDM. Instead the user has to work himself through numerous settings (18 with the UCX!), and to set the sample rate to the same value per stereo device. Therefore the driver of the Fireface UCX includes a workaround: the sample rate can be set globally for all WDM devices within the Settings dialog, see chapter 7.1. ### 8.2 DVD-Playback (AC-3/DTS) #### AC-3 / DTS When using popular DVD software players like *WinDVD* and *PowerDVD*, their audio data stream can be sent to any AC-3/DTS capable receiver using the Fireface's SPDIF output. For this to work, the WDM SPDIF device of the Fireface has to be selected in *>Control Panel/Sounds and Multimedia/ Audio<* or *>Control Panel/ Sound/Playback<*. Also check 'use preferred device only'. The DVD software's audio properties now show the options 'SPDIF Out' or similar. When selecting it, the software will transfer the non-decoded digital multichannel data stream to the Fireface. <u>Note</u>: This 'SPDIF' signal sounds like chopped noise at highest level. Try to avoid mixing and routing the signal to your loudspeakers, as they might get damaged. #### **Multichannel** PowerDVD and WinDVD can also operate as software decoder, sending a DVD's multichannel data stream directly to the analog outputs of the Fireface. For this to work select the WDM playback device 'Loudspeaker' of the Fireface in **XP**: >Control Panel/ Sounds and Multimedia/ Audio<, and check 'Use only default devices'. Additionally the loudspeaker setup, found under >Volume/ Speaker Settings/ Advanced< has to be changed from Stereo to 5.1 Surround. **Vista/7/8**: > Control Panel/ Sound/ Playback < as 'Standard'. Additionally the loudspeaker setup, found under > Configuration <, has to be changed from Stereo to 5.1 Surround. PowerDVD's and WinDVD's audio properties now list several multichannel modes. If one of these is selected, the software sends the decoded analog multichannel data to the Fireface. TotalMix can then be used to play back via any desired output channels. The typical channel assignment for surround playback is: - 1 Left - 2 Right - 3 Center - 4 LFE (Low Frequency Effects) - 5 SL (Surround Left) - 6 SR (Surround Right) Note 1: Selecting the Fireface to be used as system playback device is against our recommendations, as professional interfaces should not be disturbed by system events. Make sure to reassign the selection after usage or to disable any system sounds (tab Sounds, scheme 'No audio'). <u>Note 2</u>: The DVD player will be synced backwards from the Fireface. This means when using AutoSync and/or word clock, the playback speed and pitch follows the incoming clock signal. #### 8.3 Notes on WDM The driver offers a WDM streaming device per stereo pair, like **Analog 3+4 (Fireface UCX)**. WDM streaming is Microsoft's current driver and audio system, directly embedded into the operating system. WDM streaming is hardly usable for professional music purposes, as all data is processed by the so called Kernel Mixer, causing a latency of at least 30 ms. Additionally, WDM can perform sample rate conversions unnoticed, cause offsets between record and playback data, block channels unintentionally and much more. Several programs do not offer any direct device selection. Instead they use the *playback device* selected in Windows under XP: <Control Panel/ Sounds and Multimedia/ Audio> Vista/7/8: <Control Panel/ Sound/ Playback> The program *Sonar* from Cakewalk is unique in many ways. Sonar uses the so called **WDM Kernel Streaming**, bypassing the WDM mixer, thus achieves a similar performance to ASIO. Because of the driver's multichannel streaming ability Sonar not only finds the stereo device mentioned above, but also the 8-channel interleaved devices, and adds the channel number at the end: Fireface Analog (1+2) 1/2 is the first stereo device Fireface Analog (3+4) is the next stereo device Fireface Analog (1+2) 3/4 are the channels 3/4 of the first 8-channel interleaved device. It is not recommended to use these special interleaved devices. Also it is not possible to use one stereo channel twice (the basic and the interleaved device). #### **Multi-Channel using WDM** The WDM Streaming device *Loudspeaker* (Analog 1+2) of the RME driver can operate as usual stereo device, or as up to 8-channel device. An 8-channel playback using the Windows Media Player requires the speaker setup 7.1 Surround. Configure as follows: XP: >Control Panel /Sounds and Multimedia /Audio /Volume /Speaker Settings /Advanced < Vista/7/8: > Control Panel /Sound /Playback /Loudspeaker /Configure < #### 8.4 Channel Count under WDM The Fireface ADAT optical ports support sample rates of up to 192 kHz using a standard ADAT recorder. For this to work single-channel data is spread to two or four ADAT channels using the *Sample Multiplexing* technique. This reduces the number of available ADAT channels from 8 to 4 or 2. Whenever the Fireface changes into Double Speed (88.2/96 kHz) or Quad Speed mode (176.4/192 kHz) all devices no longer available vanish automatically. | WDM Stereo device |
Double Speed | Quad Speed | |--------------------|--------------------|--------------------| | Analog (1+2) | Analog (1+2) | Analog (1+2) | | Analog (3+4) | Analog (3+4) | Analog (3+4) | | Analog (5+6) | Analog (5+6) | Analog (5+6) | | Analog (7+8) | Analog (7+8) | Analog (7+8) | | SPDIF coax | SPDIF coax | SPDIF coax | | SPDIF / ADAT (1+2) | SPDIF / ADAT (1+2) | SPDIF / ADAT (1+2) | | ADAT (3+4) | ADAT (3+4) | ADAT (3+4) | | ADAT (5+6) | ADAT (5+6) | ADAT (5+6) | | ADAT (7+8) | ADAT (7+8) | ADAT (7+8) | Note: Under Vista/7/8 the analog outputs 1/2 show up as Loudspeaker. #### 8.5 Multi-client Operation RME audio interfaces support multi-client operation. Several programs can be used at the same time. The formats ASIO and WDM can even be used on the same playback channels simultaneously. As WDM uses a real-time sample rate conversion (ASIO does not), all active ASIO software has to use the same sample rate. However, a better overview is maintained by using the channels exclusively. This is no limitation at all, because TotalMix allows for any output routing, and therefore a playback of multiple software on the same hardware outputs. Inputs can be used from an unlimited number of WDM and ASIO software at the same time, as the driver simply sends the data to all applications simultaneously. RME's sophisticated tool *DIGICheck* is an exception to this rule. It operates like an ASIO host, using a special technique to access playback channels directly. Therefore DIGICheck is able to analyse and display playback data from any software, no matter which format it uses. # 8.6 Analog Recording For recordings via the analog inputs the corresponding record device has to be chosen (Fireface UCX Analog (x+x)). The input sensitivity of the rear inputs can be changed in three steps in TotalMix (Input Channel Settings, Level), assuring the highest signal to noise ratio will be achieved. A further optimization can be achieved by adjusting the source itself. Raise the source's output level until the peak level meters in TotalMix reach about –3 dB. The level of the front-side analog inputs can be optimized via TotalMix (Input Channel Settings, Level or Gain), or directly at the Fireface UCX by the encoders and the 7 segment display. A Signal LED and a Clip LED help to find the correct gain value. Further information is found in chapter 19. It often makes sense to monitor the input signal or send it directly to the output. This can be done at zero latency using **TotalMix** (see chapter 25). An *automated* control of real-time monitoring can be achieved by Steinberg's ASIO protocol with RME's ASIO drivers and all ASIO 2.0 compatible programs. When 'ASIO Direct Monitoring' has been switched on, the input signal is routed in real-time to the output whenever a recording is started (punch-in). # 8.7 Digital Recording Unlike analog soundcards which produce empty wave files (or noise) when no input signal is present, digital interfaces always need a valid input signal to start recording. Taking this into account, RME added a comprehensive I/O signal status display to the Fireface UCX, showing sample frequency, lock and sync status for every input, and several status LEDs directly at the unit. The sample frequency shown in the fields Clock Mode and Input Status is useful as a quick display of the current configuration of the unit and the connected external equipment. If no sample frequency is recognized, it will read 'No Lock'. This way, configuring any suitable audio application for digital recording is simple. After selecting the correct input, Fireface UCX displays the current sample frequency. This parameter can then be changed in the application's audio attributes (or similar) dialog. # 8.8 Clock Modes - Synchronization In the digital world, all devices must be either Master (clock source) or Slave (clock receiver). Whenever several devices are linked within a system, there must always be a single master clock. A digital system can only have one master! If the Fireface's clock mode is set to 'Master', all other devices must be set to 'Slave'. The Fireface UCX utilizes a very user-friendly, intelligent clock control, called **AutoSync**. In AutoSync mode, the system constantly scans the digital input for a valid signal. If any valid signal is found, the Fireface switches from the internal quartz (*Clock Mode* – Current Internal) to a clock extracted from the input signal (*Clock Mode* – Current ADAT, SPDIF or Word). The difference to a usual slave mode is that whenever the clock reference fails, the system will automatically use its internal clock and operate in clock mode Master. AutoSync guarantees that record and record-while-play will always work correctly. In certain cases however, e.g. when the inputs and outputs of a DAT machine are connected directly to the UCX, AutoSync may cause feedback in the digital carrier, so synchronization breaks down. To solve this problem switch the Fireface clock mode to Master (Clock Source – Internal). The Fireface's ADAT optical and SPDIF input operate simultaneously. Because there is no input selector however, the unit has to be told which one of the signals is the sync reference (a digital device can only be clocked from a *single* source). By selecting a Clock Source a preferred input is defined. As long as the unit sees a valid signal there, it will be used as the sync source. In some situations changing the clock mode can not be avoided. Example: An ADAT recorder is connected to the ADAT input (ADAT immediately becomes the AutoSync source) and a CD player is connected to the SPDIF input. Try recording a few samples from the CD and you will be disappointed - few CD players can be synchronized. The samples will inevitably be corrupted, because the signal from the CD player is read with the clock from the ADAT. In this case the Clock Source should be temporarily set to *SPDIF*. RME's exclusive **SyncCheck** technology (first implemented in the Hammerfall) enables an easy to use check and display of the current clock status. *SyncCheck* indicates whether there is a valid signal (Lock, No Lock) for each input (Word Clock, ADAT, SPDIF), or if there is a valid *and* synchronous signal (Sync). In the field *Clock Mode* the clock reference is shown. See chapter 37.1. Under WDM the Fireface will (has to) set the sample rate. Therefore the error shown to the right can occur. A stable signal with a sample rate of 32 kHz is detected at the ADAT input (Sync), but Windows audio had been set to 44100 Hz before. The red color of the text label signals the error condition, and prompts the user to set 32000 Hz manually as sample rate. Under ASIO the audio software sets the sample rate, so that such an error can not happen. If the input sample rate is different then there will be no Sync indication. In practice, SyncCheck provides the user with an easy way of checking whether all digital devices connected to the system are properly configured. With SyncCheck, finally anyone can master this common source of error, previously one of the most complex issues in the digital studio world. # 9. Operation under ASIO #### 9.1 General Start the ASIO software and select ASIO Fireface USB as the audio I/O device or the audio driver. The Fireface UCX supports ASIO Direct Monitoring (ADM). The Fireface UCX MIDI I/O can be used with both MME MIDI and DirectMusic MIDI. # 9.2 Channel Count under ASIO At a sample rate of 88.2 or 96 kHz, the ADAT optical input and outputs operate in S/MUX mode, so the number of available channels is reduced from 8 to 4. At a sample rate of 176.4 and 192 kHz, the ADAT optical input and output operates in S/MUX4 mode, so the number of available channels is limited to 2. <u>Note</u>: When changing the sample rate range between Single, Double and Quad Speed the number of channels presented from the ASIO driver will change too. This may require a reset of the I/O list in the audio software. | Single Speed | Double Speed | Quad Speed | |-------------------------|-------------------------|-------------------------| | Analog 1 to 8 | Analog 1 to 8 | Analog 1 to 8 | | SPDIF coax L / R | SPDIF L / R | SPDIF L / R | | SPDIF opt LR / ADAT 1/2 | SPDIF opt LR / ADAT 1/2 | SPDIF opt LR / ADAT 1/2 | | ADAT 3 to 8 | ADAT 3 to 4 | - | #### 9.3 Known Problems If a computer does not provide sufficient CPU-power and/or sufficient USB or PCI* bus transfer rates, then drop outs, crackling and noise will appear. Raising the buffer size in the Settings dialog of the Fireface UCX helps in most cases. It is also recommended to deactivate all PlugIns to verify that these are not the reason for such effects. Further information is found in chapter 37.3. *The note on PCI is not an error in this manual: very often FireWire controllers are connected to the PCI bus. Therefore the same problems known from PCI audio cards can occur with FireWire audio interfaces as well. Further information is found in chapter 37.4. Another common source of trouble is incorrect synchronization. ASIO does not support asynchronous operation, which means that the input and output signals not only have to use the same sample frequency, but also have to be in sync. All devices connected to the Fireface UCX must be properly configured for Full Duplex operation. As long as SyncCheck (in the Settings dialog) only displays *Lock* instead of *Sync*, the devices have not been set up properly! The same applies when using more than one Fireface UCX - they all have to be in sync. Else a periodically repeated noise will be heard. Fireface UCX supports ASIO Direct Monitoring (ADM). Please note that not all programs support ADM completely or error-free. The most often reported problem is the wrong behaviour of panorama in a stereo channel. In case of a drift between audio and MIDI, or in case of a fixed deviation (MIDI notes placed close before or behind the correct position), the settings in Cubase/Nuendo have to be changed. At the time of print the option
'Use System Timestamp' should be activated. The Fireface supports both MME MIDI and DirectMusic MIDI. It depends on the used application which one will work better. # 10. Using more than one Fireface UCX The current driver supports up to three Fireface UCX. All units have to be in sync, i.e. have to receive valid sync information (either via word clock or by using AutoSync and feeding synchronized signals). - If one of the Firefaces is set to clock mode Master, all others have to be set to clock mode AutoSync, and have to be synced from the master, for example by feeding word clock. The clock modes of all units have to be set up correctly in the Fireface Settings dialog. - If all units are fed with a synchronous clock, i.e. all units show *Sync* in their Settings dialog, all channels can be used at once. This is especially easy to handle under ASIO, as the ASIO driver presents all units as one. The driver takes care of the numbering of all Firefaces, so that it doesn't change. The unit with the lowest serial number is always 'Fireface (1)'. Please note: - If the Fireface (1) is switched off, Fireface (2) logically turns to the first and only Fireface. If Fireface (1) is switched on later, the numbering changes and the unit becomes Fireface (2) immediately. - The driver has no control on the numbering of the WDM devices. Therefore it might happen that the WDM devices (2) are mapped to unit (1), especially when switching on more Firefaces during a Windows session. A reboot with all Firefaces already operational should solve this problem. <u>Note</u>: TotalMix is part of the hardware of each Fireface. Up to three mixers are available, but these are separated and can't interchange data. Therefore a global mixer for all units is not possible. When using more than one Fireface UCX the USB/FW bus might get overloaded. To prevent this connect all units to different busses. See chapter 37.3 and 37.4 for further notes on USB and FireWire performance. #### 11. DIGICheck Windows The DIGICheck software is a unique utility developed for testing, measuring and analysing digital audio streams. Although this Windows software is fairly self-explanatory, it still includes a comprehensive online help. DIGICheck 5.60 operates as multi-client ASIO host, therefore can be used in parallel to any software, be it WDM or ASIO, with both inputs and outputs (!). The following is a short summary of the currently available functions: - Level Meter. High precision 24-bit resolution, 2/8/18 channels. Application examples: Peak level measurement, RMS level measurement, over-detection, phase correlation measurement, dynamic range and signal-to-noise ratios, RMS to peak difference (loudness), long term peak measurement, input check. Oversampling mode for levels higher than 0 dBFS. Vertical and horizontal mode. Slow RMS and RLB weighting filter. Supports visualization according to the K-System. - Hardware Level Meter for Input, Playback and Output. Reference Level Meter freely configurable, causing near zero CPU load, because calculated from the Fireface hardware. - **Vector Audio Scope**. World wide unique Goniometer showing the typical afterglow of a oscilloscope-tube. Includes Correlation meter and level meter. - **Spectral Analyser.** World wide unique 10-, 20- or 30-band display in analog bandpass filter technology. 192 kHz-capable! - Totalyser. Spectral Analyser, Level Meter and Vector Audio Scope in a single window. - **Surround Audio Scope.** Professional Surround Level Meter with extended correlation analysis, ITU weighting and ITU summing meter. - ITU1770/EBU R128 Meter. For standardized loudness measurements. - **Bit Statistics & Noise**. Shows the true resolution of audio signals as well as errors and DC offset. Includes Signal to Noise measurement in dB and dBA, plus DC measurement. - Channel Status Display. Detailed analysis and display of SPDIF and AES/EBU Channel Status data. - Global Record. Long-term recording of all channels at lowest system load. - Completely multi-client. Open as many measurement windows as you like, on any channels and inputs or outputs! To install DIGICheck, go to the **\DIGICheck** directory on the RME Driver CD and run setup.exe. Follow the instructions prompted on the screen. DIGICheck is constantly updated. The latest version is always available on our website www.rme-audio.com, section Downloads / DIGICheck. # 12. Hotline - Troubleshooting The newest information can always be found on our website www.rme-audio.com, section FAQ, Latest Additions. The 8 ADAT channels don't seem to work The optical output ADAT has been switched to SPDIF. As can be seen in the block diagram, all channels and their assignments still exist, but the optical transmitter has been disconnected from ADAT and is now fed from the SPDIF output (channels 9/10). The ADAT play-back devices are still usable by routing and mixing them in TotalMix to other outputs. Playback works, but record doesn't - Check that there is a valid signal at the input. If so, the current sample frequency is displayed in the Settings dialog. - Check whether the Fireface UCX has been selected as recording device in the audio application. - Check whether the sample frequency set in the audio application ('Recording properties' or similar) matches the input signal. - Check that cables/devices have not been connected in a closed loop. If so, set the system's clock mode to Master. Crackle during record or playback - Increase the number and size of buffers in the 'Settings' dialog or in the application. - Try different cables (coaxial or optical) to rule out any defects here. - Check that cables/devices have not been connected in a closed loop. If so, set the system's clock mode to 'Master'. - Check the Settings dialog for displayed Errors. Driver installation and Settings dialog/TotalMix work, but a playback or record is not possible While recognition and control of the device are low bandwidth applications, playback/record needs the full FireWire transmission performance. Therefore, defective FireWire cables with limited transmission bandwidth can cause such an error scheme. The same is true for USB cables. # **User's Guide** # Fireface UCX ▶ Installation and Operation – Mac OS X # 13. Hardware, Driver and Firmware Installation #### 13.1 Hardware and Driver Installation After the Fireface has been connected to the computer and switched on install the drivers from the RME Driver CD. The driver files are located in the folder \Fireface_USB and \Fireface_FW. Installation works automatically by a double-click on the file Fireface USB.pkg or Fireface.pkg. RME recommends downloading the latest driver version from the RME website. If done, the procedure is as follows: **USB:** A double-click onto **driver_usb_mac.zip** expands the archive file to **Fireface USB.pkg**. Installation works automatically by a double-click on this file. **FW:** A double-click onto **fireface_x86.zip** expands the archive file to **Fireface.pkg**. Installation works automatically by a double-click on this file. During driver installation the programs **Totalmix** (TotalMix FX) and **Fireface USB Settings** or **Fireface Settings** are copied to the Applications folder. They will automatically start into the dock if a Fireface UCX is connected. A reboot of the computer is not required. **Driver Updates** do not require to remove the existing drivers. Simply install the new driver over the existing one. <u>Note</u>: FireWire and USB can be connected at the same time, but it is not recommended. However, the unit will use only one port. Upon start of the computer the port that becomes active first will be used. With no port active the unit searches on both USB and FireWire until it finds an active one. Possible reasons why a Fireface is not found automatically: - The USB or FireWire port is not active in the system (check in System Profiler) - The USB or FireWire cable is not, or not correctly inserted into the socket #### 13.2 De-installing the Drivers In case of problems the driver files can be deleted manually by dragging them to the trash bin: #### **USB** /Applications/Fireface USB Settings /Applications/Totalmix /System/Library/Extensions/FirefaceUSB.kext /Users/username/Library/Preferences/de.rme-audio.TotalmixFX.plist /Users/username/Library/Preferences/de.rme-audio.Fireface_USB_Settings.plist /Library/LaunchAgents/de.rme-audio.firefaceUSBAgent.plist # **FireWire** /Applications/Fireface Settings /Applications/Totalmix /System/Library/Extensions/FirefaceAudioDriver.kext /Users/username/Library/Preferences/de.rme-audio.TotalmixFX.plist /Users/username/Library/Preferences/de.rme-audio.FirefaceSettings.plist /Library/LaunchAgents/de.rme-audio.firefaceAgent.plist Under the latest Mac OS the User/Library folder is not visible in the Finder. To unhide it start Finder, click on the menu item Go. Hold down the option (alt) key, then click on Library. # 13.3 Firmware Update The Flash Update Tool updates the firmware of the Fireface UCX to the latest version. It requires an already installed driver. Start the program **Fireface USB Flash**. The Flash Update Tool displays the current revision of the Fireface firmware, and whether it needs an update or not. If so, simply press the 'Update' button. A progress bar will indicate when the flash process is finished (Verify Ok). After the update the Fireface UCX needs to be reset. This is done by powering down the Fireface for a few seconds. A reboot of the computer is not necessary. When the update fails (status: failure), the unit's second BIOS will be used from the next cold boot on (Secure BIOS Technology). Therefore the unit stays fully functional. The flash process should then be tried again on a different computer. # 14. Configuring the Fireface UCX ### 14.1 Settings Dialog Configuring the Fireface is done via its own settings dialog. Start the program **Fireface USB Settings**. The mixer of the Fireface UCX
(TotalMix FX) can be configured by starting the program **Totalmix**. The Fireface's hardware offers a number of helpful, well thought-out practical functions and options which affect how the card operates - it can be configured to suit many different requirements. The following is available in the 'Settings' dialog: - Operation of the DSP - Configuration of digital I/Os - · Current sample rate - · Synchronization behaviour - State of input and output Any changes performed in the Settings dialog are applied immediately - confirmation (e.g. by exiting the dialog) is not required. However, settings should not be changed during playback or record if it can be avoided, as this can cause unwanted noises. Use the drop down menu **Properties For** to select the unit to be configured. On the right of it the current firmware and driver version is shown. #### **Output Format** #### Word The word clock output signal usually equals the current sample rate. Selecting *Single Speed* causes the output signal to always stay within the range of 32 kHz to 48 kHz. So at 96 kHz and 192 kHz sample rate, the output word clock is 48 kHz. #### Optical The optical TOSLINK output can operate as ADAT or SPDIF output. The Channel Status is fixed to Consumer state. Note: The optical input detects the incoming format automatically. #### SPDIF coax. The coaxial SPDIF output can have the Channel Status Consumer or Professional. For further details please refer to chapter 21.2. #### **Clock Mode** #### Sample Rate Used to set the current sample rate. This is the same setting as in the Audio MIDI Setup, just added here for your convenience. #### **Clock Source** The unit can be configured to use its own clock (Internal = Master), or one of the input signals (Word, ADAT, SPDIF coax. = Slave). If the selected source isn't available, the unit will change to the next available one (this functionality is called AutoSync). If none is available then the internal clock is used. The current clock source is displayed below. #### **Input Status** Indicates for each input (Word, optical, SPDIF coax.) whether there is a valid signal (Lock, No Lock), or if there is a valid *and* synchronous signal (Sync). The third column shows the sample frequency detected by the hardware (coarse recognition, 32 kHz, 44.1 kHz, 48 kHz etc.). See also chapter 37.1. #### **Options** #### DSP - EQ+D for Record Switches EQ and Dynamics of all input channels into the recording path. In case Loopback has been activated the EQ and Dynamics of the Output channel are within the recording path. See also chapter 27.5. #### **WC In - Termination** Checking this option terminates the word clock input internally with 75 Ohms. #### Limit Bandwidth (only for the FireWire driver) Allows to reduce the amount of bandwidth used on the FireWire bus. See chapter 37.4. All channels (default) activates all 18 input and output channels. Analog +SPDIF + ADAT 1-4 disables channels 15–18 (from ADAT). Analog + SPDIF activates all 8 analog channels plus SPDIF. Analog activates only the eight analog channels. #### 14.2 Clock Modes - Synchronization In the digital world, all devices must be either Master (clock source) or Slave (clock receiver). Whenever several devices are linked within a system, there must always be a single master clock. A digital system can only have one master! If the Fireface's clock mode is set to 'Master', all other devices must be set to 'Slave'. The Fireface UCX utilizes a very user-friendly, intelligent clock control, called **AutoSync**. In AutoSync mode, the system constantly scans the digital input for a valid signal. If any valid signal is found, the Fireface switches from the internal quartz (*Clock Mode* – Current Internal) to a clock extracted from the input signal (*Clock Mode* – Current ADAT, SPDIF or Word). The difference to a usual slave mode is that whenever the clock reference fails, the system will automatically use its internal clock and operate in clock mode Master. AutoSync guarantees that record and record-while-play will always work correctly. In certain cases however, e.g. when the inputs and outputs of a DAT machine are connected directly to the Fireface UCX, AutoSync may cause feedback in the digital carrier, so synchronization breaks down. To solve this problem switch the Fireface clock mode to Master (Clock Source – Internal). The Fireface's ADAT optical and SPDIF inputs operate simultaneously. Because there is no input selector however, the unit has to be told which one of the signals is the sync reference (a digital device can only be clocked from a *single* source). By selecting a clock source a preferred input is defined. As long as the unit sees a valid signal there, this input will be used as the sync source. In some situations changing the clock mode can not be avoided. Example: An ADAT recorder is connected to the ADAT input (ADAT immediately becomes the AutoSync source) and a CD player is connected to the SPDIF input. Try recording a few samples from the CD and you will be disappointed few CD players can be synchronized. The samples will inevitably be corrupted, because the signal from the CD player is read with the clock from the ADAT. In this case the Clock Source should be temporarily set to SPDIF. RME's exclusive **SyncCheck** technology (first implemented in the Hammerfall) enables an easy to use check and display of the current clock status. *SyncCheck* indicates whether there is a valid signal (Lock, No Lock) for each input (Word Clock, ADAT, SPDIF), or if there is a valid *and* synchronous signal (Sync). In the field *Clock Mode* the clock reference is shown. See chapter 37.1. In practice, SyncCheck provides the user with an easy way of checking whether all digital devices connected to the system are properly configured. With SyncCheck, finally anyone can master this common source of error, previously one of the most complex issues in the digital studio world. #### 15. Mac OS X FAQ #### 15.1 MIDI doesn't work In some cases the applications do not show the MIDI port. The reason for this is usually visible within the **Audio MIDI Setup – MIDI Window**. It displays no RME MIDI device, or the device is greyed out and therefore inactive. Mostly, removing the greyed out device and searching for MIDI devices again will solve the problem. The Fireface is MIDI class compliant. Therefore it comes without a driver. OS X recognizes it as MIDI device and will be using it with the driver included in the operating system. # 15.2 Repairing Disk Permissions Repairing permission can solve problems with the installation process - plus many others. To do this, launch **Disk Utility** located in **Utilities**. Select your system drive in the drive/volume list to the left. The **First Aid** tab to the right now allows you to check and repair disk permissions. # 15.3 Supported Sample Rates RME's Mac OS X driver supports all sampling frequencies provided by the hardware. This includes 32 kHz and 64 kHz, and even 128 kHz, 176.4 kHz and 192 kHz. But not any software will support all the hardware's sample rates. The hardware's capabilities can easily be verified in the **Audio MIDI Setup – Audio Window**. Select the Fireface UCX. A click on **Format** will list the supported sample frequencies. #### 15.4 Channel Count under Core Audio At a sample rate of 88.2 or 96 kHz, the ADAT optical input and output operates in S/MUX mode, so the number of available channels is reduced from 8 to 4. At a sample rate of 176.4 and 192 kHz, the ADAT optical input and output operates in S/MUX4 mode, so the number of available channels is limited to 2. It is not possible to change the number of Core Audio devices without a reboot of the computer. Therefore whenever the Fireface changes into Double Speed (88.2/96 kHz) or Quad Speed mode (176.4/192 kHz) all devices stay present, but become partly inactive. | Single Speed | Double Speed | Quad Speed | |-------------------------|-------------------------|-------------------------| | Analog 1 to 8 | Analog 1 to 8 | Analog 1 to 8 | | SPDIF coax L / R | SPDIF L / R | SPDIF L / R | | SPDIF opt LR / ADAT 1/2 | SPDIF opt LR / ADAT 1/2 | SPDIF opt LR / ADAT 1/2 | | ADAT 3 to 8 | ADAT 3 to 4 | - | #### 15.5 Various Information The current driver of the Fireface requires at least Mac OS 10.6. Programs that don't support card or channel selection will use the device chosen as **Input** and **Output** in the **System Preferences – Sound** panel. Via Launchpad – Other – Audio MIDI Setup the Fireface can be configured for the system wide usage in more detail. Programs that don't support channel selection will always use channels 1/2, the first stereo pair. To access other inputs, use the following workaround with TotalMix: route the desired input signal to output channels 1/2. In the channel settings of outputs 1/2 activate *Loopback*. Result: the desired input signal is now available at input channel 1/2, without further delay/latency. Use **Configure Speakers** to freely configure the stereo or multichannel playback to any available channels. # 16. Using more than one Fireface OS X supports the usage of more than one audio device within a audio software. This is done via the Core Audio function **Aggregate Devices**, which combines several devices into one. The current driver supports up to three Fireface UCX. All units have to be in sync, i.e. have to receive valid sync information either via word clock or by feeding synchronized signals. - If one of the Firefaces is set to clock mode Master, all others have to be set to clock mode Slave, and have to be synced from the master, for example by feeding word clock. The clock modes of all units have to be set up correctly in the Fireface Settings dialog. - If all units are fed with a synchronous clock, i.e. all units show Sync in their Settings dialog, all channels can be used at once. When using more than one Fireface UCX the USB/FW bus might get overloaded. To prevent this connect all units to
different busses. See chapter 37.3 and 37.4 for further notes on USB and FireWire performance. Note: TotalMix is part of the hardware of each Fireface. Up to three mixers are available, but these are separated and can't interchange data. Therefore a global mixer for all units is not possible. #### 17. DIGICheck Mac The DIGICheck software is a unique utility developed for testing, measuring and analysing digital audio streams. Although this Windows software is fairly self-explanatory, it still includes a comprehensive online help. DIGICheck 0.670 operates in parallel to any software, showing all input data. The following is a short summary of the currently available functions: - Level Meter. High precision 24-bit resolution, 2/8/18 channels. Application examples: Peak level measurement, RMS level measurement, over-detection, phase correlation measurement, dynamic range and signal-to-noise ratios, RMS to peak difference (loudness), long term peak measurement, input check. Oversampling mode for levels higher than 0 dBFS. Vertical and horizontal mode. Slow RMS and RLB weighting filter. Supports visualization according to the K-System. - Hardware Level Meter for Input, Playback and Output. Reference Level Meter freely configurable, causing near zero CPU load, because calculated from the Fireface hardware. - **Vector Audio Scope**. World wide unique Goniometer showing the typical afterglow of a oscilloscope-tube. Includes Correlation meter and level meter. - **Spectral Analyser.** World wide unique 10-, 20- or 30-band display in analog bandpass filter technology. 192 kHz-capable! - Totalyser. Spectral Analyser, Level Meter and Vector Audio Scope in a single window. - **Surround Audio Scope.** Professional Surround Level Meter with extended correlation analysis, ITU weighting and ITU summing meter. - ITU1770/EBU R128 Meter. For standardized loudness measurements. - **Bit Statistics & Noise**. Shows the true resolution of audio signals as well as errors and DC offset. Includes Signal to Noise measurement in dB and dBA, plus DC measurement. - Completely multi-client. Open as many measurement windows as you like, on any channels and inputs or outputs! To install DIGICheck, go to the **\DIGICheck** directory on the RME Driver CD and run *setup.exe*. Follow the instructions prompted on the screen. DIGICheck is constantly updated. The latest version is always available on our website **www.rme-audio.com**, section **Downloads / DIGICheck**. # 18. Hotline - Troubleshooting The newest information can always be found on our website www.rme-audio.com, section FAQ, latest Additions. The unit and drivers have been installed correctly, but playback does not work: - Is Fireface UCX listed in the System Profiler? (Vendor ID 2613). - Has Fireface been selected as current playback device in the audio application? The 8 ADAT channels don't seem to work The optical output ADAT has been switched to SPDIF. As can be seen in the block diagram, all channels and their assignments still exist, but the optical transmitter has been disconnected from ADAT. The ADAT playback devices are still usable by routing and mixing them in TotalMix to other outputs. Playback works, but record doesn't: - Check that there is a valid signal at the input. If so, the current sample frequency is displayed in the Settings dialog. - Check whether the Fireface UCX has been selected as recording device in the audio application. - Check whether the sample frequency set in the audio application ('Recording properties' or similar) matches the input signal. - Check that cables/devices have not been connected in a closed loop. If so, set the system's clock mode to 'Master'. Crackle during record or playback: - Increase the number and size of buffers in the application. - Try different cables (coaxial or optical) to rule out any defects here. - Check that cables/devices have not been connected in a closed loop. If so, set the system's clock mode to 'Master'. - Check the Settings dialog for displayed Errors. Possible causes for a Fireface not working • The FireWire or USB cable is not, or not correctly inserted into the socket Driver installation and Settings dialog/TotalMix work, but a playback or record is not possible While recognition and control of the device are low bandwidth applications, playback/record needs the full FireWire transmission performance. Therefore, defective FireWire cables with limited transmission bandwidth can cause such an error scheme. The same is true for USB cables. # **User's Guide** # Fireface UCX Inputs and Outputs # 19. Analog Inputs #### 19.1 Line Rear The Fireface has four balanced Line inputs as 1/4" TRS jacks on the back of the unit. The electronic input stage is built in a servo balanced design which handles unbalanced (mono jacks) and balanced (stereo jacks) correctly, automatically adjusting the level reference. When using unbalanced cables with TRS jacks: be sure to connect the 'ring' contact of the TRS jack to ground. Otherwise noise may occur, caused by the unconnected negative input of the balanced input. One of the main issues when working with an AD-converter is to maintain the full dynamic range within the best operating level. Therefore the Fireface UCX internally uses hi-quality electronic switches, which allow for a perfect adaptation of all rear inputs to the three most often used studio levels. The Fireface UCX uses the following level references: | Reference | 0 dBFS @ | Headroom | |-----------|----------|----------| | Lo Gain | +19 dBu | 15 dB | | +4 dBu | +13 dBu | 9 dB | | -10 dBV | +2 dBV | 12 dB | The above levels are also found in all other RME devices. Therefore they are fully compatible to each other. # 19.2 Microphone / Line Front The two balanced microphone inputs of the Fireface UCX offer a digitally controlled gain of 0 to 65 dB via XLR/TRS combo jacks. The gain range is 65 dB, adjustable in 1 dB steps over a range of 55 dB. The soft switching, hi-current Phantom power (48 Volt), switchable per channel, provides a professional handling of condensor mics. Up to a level of +10 dBu, the front XLR input can also be used as Line input. The two combo jacks also allow for the usage of mono and stereo TRS jacks. The TRS inputs have a fixed level attenuation of 11 dB. Based on the adjustable amplification from +0 dB up to +65 dB, the sensitivity is +21 dBu down to -44 dBu, referenced to full scale of the AD-converter. Therefore the TRS inputs are true full level Line inputs, and the unit can also be used as Line amplifier. The TRS jacks are free of phantom power. Two LEDs display a present signal (from -60 dBFS on) and warn against overload (0 dBFS). Channels 1 to 4 feature an automatic overload protection. **AutoSet** tries to keep a headroom of 6 dB. Levels higher than -6 dBFS will permanently reduce the gain. To check set the channels to a high gain and apply an input signal. The button in TotalMix will quickly rotate back to a gain that is appropriate. While AutoSet in the UCX is not exactly the same as in the RME Micstasy (with extreme overloads distortion will occur for the fraction of a second before the level is set correctly), it works quite well in real-world applications and will prevent distorted recordings reliably. Using stereo channels AutoSet operates ganged. AutoSet can be activated in the channel Settings in TM FX. ## 19.3 Instrument / Line Front Inputs 3/4 of the Fireface UCX are exceptionally flexible. Several gain and impedance options make them the ideal receivers for both line and instrument signals. #### Line Inputs 3/4 have balanced line inputs as 1/4" TRS jacks. The electronic input stage is built in a servo balanced design which handles unbalanced (mono jacks) and balanced (stereo jacks) correctly, automatically adjusting the level reference. When using unbalanced cables with TRS jacks: be sure to connect the 'ring' contact of the TRS jack to ground. Otherwise noise may occur, caused by the unconnected negative input of the balanced input. Inputs 3/4 operate in perfect harmony with the rear inputs 5 to 8, as they are identical in all technical specifications. But they have their own reference level setting, independent from the setting selected for input 5 to 8, and they have ## Adjustable Input Gain Via **Gain** in TotalMix channel settings, or by using the rotary encoder on the front, an additional gain can be applied to the input signals of channels 3/4. The gain range is 0 dB up to 12 dB, in steps of 0.5 dB. This option not only allows for the use of sources with low level output signals, but also for example to adjust the balance between channel 3 and 4 precisely, already before the recording takes place. Three reference levels plus 12 dB adjustable gain turns these high-quality inputs into a universal connectivity solution that can't be beaten. Be it keyboards, samplers, CD players or what ever you have: These inputs handle levels from –7.5 dBu up to +19 dBu. Thus the unit can also be used as Line gain amplifier. But wait, there is one more! Inputs 3 and 4 also handle your #### Instrument The main difference between a line- and instrument input is the input's impedance. Via the option **Inst** in the TotalMix channel settings, the input impedance changes from 10 kOhm to 470 kOhm (also called Hi-Z). At the same time the input sensitivity rises by 6 dB. The instrument input operates unbalanced. Please don't use (stereo) TRS jacks in that mode. For AutoSet please read chapter 19.2. Overall the inputs 3/4 can work with levels from -13.5 dBu up to +19 dBu. Two LEDs display a present signal (from -60 dBFS on) and warn against overload (0 dBFS). # 20. Analog Outputs #### 20.1 Line The short circuit protected, low impedance line outputs of channels 1 to 6 are available as 1/4" TRS jacks on the back of the unit. The electronic output stage is built in a servo balanced design which handles unbalanced (mono jacks) and balanced (stereo jacks) correctly. To
maintain an optimum level for devices connected to the analog outputs, the Fireface UCX internally uses hi-quality electronic switches, which allow for a perfect adaptation of all outputs to the three most often used studio levels. As with the analog inputs, the analog output levels are defined to maintain a problem-free operation with most other devices. The headroom of the Fireface UCX lies between 9 and 15 dB, according to the chosen reference level: | Reference | 0 dBFS @ | Headroom | |-----------|----------|----------| | Hi Gain | +19 dBu | 15 dB | | +4 dBu | +13 dBu | 9 dB | | -10 dBV | +2 dBV | 12 dB | The above levels are also found in all other RME devices. Therefore they are fully compatible to each other. # 20.2 Headphones / Line Out Channels 7/8 of the Fireface are available on the front via one 1/4" unbalanced TRS jack (stereo output). These channels use the same converters as the other line outputs, therefore offer the same technical specifications. These outputs are special low impedance types, ready to be used with headphones. They can also be used as high-quality - yet unbalanced - line outputs. To optimize this stereo output for monitoring purposes, outputs 7/8 have their own 3-stage hardware-based reference level circuitry, independent form the setting of channels 1 to 6, providing perfect pre-adjustment for the connected monitor speakers. The main volume control is then performed via TotalMix, either at the computer or directly at the unit (rotary encoder, PH). In case the output should operate as line output, an adapter TRS plug to RCA phono plugs, or TRS plug to TS plugs is required. The pin assignment follows international standards. The left channel is connected to the tip, the right channel to the ring of the TRS jack/plug. Shield # 21. Digital Connections #### **21.1 ADAT** The ADAT optical input of the Fireface UCX is fully compatible with all ADAT optical outputs. RME's unsurpassed Bitclock PLL prevents clicks and drop outs even in extreme varipitch operation, and guarantees a fast and low jitter lock to the digital input signal. A usual TOSLINK cable is sufficient for connection. #### **ADAT In** Interface for a device sending an ADAT signal to the Fireface UCX. Carries the channels 1 to 8. When receiving a Double Speed signal, this input carries the channels 1 to 4, at Quad Speed the channels 1 and 2. #### **ADAT Out** Interface for a device receiving an ADAT signal from the Fireface UCX. Transmits channels 1 to 8. When sending a Double Speed signal, this port carries channels 1 to 4, at Quad Speed the channels 1 and 2. <u>Note</u>: To use the optical output as ADAT output make sure the option *Output Format / Optical* in the Settings dialog is set to ADAT, not to SPDIF. # **21.2 SPDIF** The Fireface UCX has two SPDIF inputs and outputs. Coaxial and optical can be used simultaneously, with different audio signals. Note that the sources have to be synchronous, as the unit does not have a dedicated sample rate converter. The optical input automatically switches to SPDIF operation when such a signal is detected. The audio information is then shown in TotalMix on the first two ADAT channels 11/12, AS 1/2. To send out SPDIF from the optical output, select the option *Output Format Optical – SPDIF* in the Settings dialog. The output signal in TotalMix has to be present on the first ADAT channels, AS 1+2. The Fireface UCX inputs accept SPDIF as well as AES/EBU. To receive signals in AES/EBU format, an adapter cable is required. Pins 2 and 3 of a female XLR plug are connected individually to the two pins of a phono plug. The cable shielding is connected to pin 1 of the XLR and the ground contact of the phono plug. # **Special Characteristics of the SPDIF Output** Apart from the audio data itself, digital signals in SPDIF or AES/EBU format have a header containing channel status information. False channel status is a common cause of malfunction. The Fireface UCX ignores the received header and creates a totally new one for the output signal. The Fireface UCX new output header is optimized for largest compatibility with other digital devices: - 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz, 176.4 kHz, 192 kHz depending on the current sample rate - Audio use, Non-Audio - No Copyright, Copy Permitted - Format Consumer or Professional - Category General, Generation not indicated - 2-channel, No Emphasis - · Aux bits Audio Use Professional AES/EBU equipment can be connected to the Fireface UCX thanks to its 'Professional' format option and a doubled output voltage. Output cables should have the same pinout as those used for input (see above), but with a male XLR plug instead of a female one. Note that most consumer HiFi equipment (with optical or phono SPDIF inputs) will only accept signals in 'Consumer' format! Therefore in SPDIF mode the optical output is fixed to Consumer status. # 21.3 MIDI Fireface UCX offers two MIDI I/Os on four 5-pin DIN sockets via an included breakout cable. The MIDI ports are added to the system by the driver. Using MIDI capable software, these ports can be accessed under the name *Fireface MIDI*. Using more than one Fireface, the operating system adds a consecutive number to the port name, like *Fireface MIDI* (2) etc. The MIDI ports support multi-client operation. A MIDI input signal can be received from several programs at the same time. Even the MIDI output can be used by multiple programs simultaneously. However, due to the limited bandwidth of MIDI, this kind of application will often show various problems. Note: The MIDI input LEDs display any kind of MIDI activity, including MIDI Clock, MTC and Active Sensing. The latter is sent by most keyboards every 0.3 seconds. # 22. Word Clock # 22.1 Word Clock Input and Output SteadyClock guarantees an excellent performance in all clock modes. Based on the highly efficient jitter suppression, the Fireface refreshes and cleans up any clock signal, and provides it as reference clock at the BNC output (see section 37.8). # Input The Fireface's word clock input is active when *Pref. Sync Ref* in the Settings dialog has been switched to *Word Clock*, the clock mode *AutoSync* has been activated, and a valid word clock signal is present. The signal at the BNC input can be Single, Double or Quad Speed, the Fireface UCX automatically adapts to it. As soon as a valid signal is detected, the WC LED is lit, and the Settings dialog shows either Lock or Sync (see chapter 37.1). Thanks to RME's *Signal Adaptation Circuit*, the word clock input still works correctly even with heavily mis-shaped, dc-prone, too small or overshoot-prone signals. Thanks to automatic signal centering, 300 mV (0.3V) input level is sufficient in principle. An additional hysteresis reduces sensitivity to 1.0 V, so that over- and undershoots and high frequency disturbances don't cause a wrong trigger. The Fireface UCX word clock input can be high impedance (not terminated) or internally terminated (75 Ohms). The state is comfortably selected within the Settings dialog. To terminate the input check the option *Termination* under *Options / Word In*. # Output The word clock output of the Fireface is constantly active, providing the current sample frequency as word clock signal. As a result, in Master mode the provided word clock is defined by the currently used software. In Slave mode the provided frequency is identical to the one present at the currently chosen clock input. When the current clock signal fails, the Fireface UCX switches to Master mode and adjusts itself to the next, best matching frequency (44.1 kHz, 48 kHz etc.). Selecting *Single Speed* in the Settings dialog (Output Format Word) causes the output signal to always stay within the range of 32 kHz to 48 kHz. So at 96 kHz and 192 kHz sample rate, the output word clock is 48 kHz. The received word clock signal can be distributed to other devices by using the word clock output. With this the usual T-adapter can be avoided, and the Fireface UCX operates as *Signal Refresher*. This kind of operation is highly recommended, because - input and output are phase-locked and in phase (0°) to each other - SteadyClock removes nearly all jitter from the input signal - the exceptional input (1 Vpp sensitivity instead of the usual 2.5 Vpp, dc cut, Signal Adaptation Circuit) plus SteadyClock guarantee a secure function even with highly critical word clock signals Thanks to a low impedance, but short circuit proof output, the Fireface delivers 4 Vpp to 75 Ohms. For wrong termination with 2 \times 75 Ohms (37.5 Ohms), there are still 3.3 Vpp at the output. # 22.2 Technical Description and Usage In the analog domain one can connect any device to another device, a synchronization is not necessary. Digital audio is different. It uses a clock, the sample frequency. The signal can only be processed and transmitted when all participating devices share the same clock. If not, the signal will suffer from wrong samples, distortion, crackle sounds and drop outs. AES/EBU, SPDIF and ADAT are self-clocking, an additional word clock connection in principle isn't necessary. But when using more than one device simultaneously problems are likely to happen. For example any self-clocking will not work in a loop cabling, when there is no 'master' (main clock) inside the loop. Additionally the clock of all participating devices has to be synchronous. This is often impossible with devices limited to playback, for example CD players, as these have no SPDIF input, thus can't use the self clocking technique as clock reference. In a digital studio synchronisation is maintained by connecting all devices to a central sync source. For example the mixing desk works as master and sends a reference signal, the word clock, to all other devices. Of course this will only work as long as all other devices are equipped with a word clock or sync input, thus being able to work as slave (some professional CD players indeed have a word clock input).
Then all devices get the same clock and will work in every possible combination with each other. A digital system can only have one master! If the Fireface's clock mode is set to 'Master', all other devices must be set to 'Slave'. But word clock is not only the 'great problem solver', it also has some disadvantages. The word clock is based on a fraction of the really needed clock. For example SPDIF: 44.1 kHz word clock (a simple square wave signal) has to be multiplied by 256 inside the device using a special PLL (to about 11.2 MHz). This signal then replaces the one from the quartz crystal. Big disadvantage: because of the high multiplication factor the reconstructed clock will have great deviations called jitter. The jitter of a word clock is typically 15 times higher as when using a quartz based clock. The end of these problems should have been the so called Superclock, which uses 256 times the word clock frequency. This equals the internal quartz frequency, so no PLL for multiplying is needed and the clock can be used directly. But reality was different, the Superclock proved to be much more critical than word clock. A square wave signal of 11 MHz distributed to several devices - this simply means to fight with high frequency technology. Reflections, cable quality, capacitive loads - at 44.1 kHz these factors may be ignored, at 11 MHz they are the end of the clock network. Additionally it was found that a PLL not only generates jitter, but also rejects disturbances. The slow PLL works like a filter for induced and modulated frequencies above several kHz. As the Superclock is used without any filtering such a kind of jitter and noise suppression is missing. The actual end of these problems is offered by the **SteadyClock** technology of the Fireface UCX. Combining the advantages of modern and fastest digital technology with analog filter techniques, re-gaining a low jitter clock signal of 22 MHz from a slow word clock of 44.1 kHz is no problem anymore. Additionally, jitter on the input signal is highly rejected, so that even in real world usage the re-gained clock signal is of highest quality. # 22.3 Cabling and Termination Word clock signals are usually distributed in the form of a network, split with BNC T-adapters and terminated with resistors. We recommend using off-the-shelf BNC cables to connect all devices, as this type of cable is used for most computer networks. You will find all the necessary components (T-adapters, terminators, cables) in most electronics and/or computer stores. The latter usually carries 50 Ohms components. The 75 Ohms components used for word clock are part of video technology (RG59). Ideally, the word clock signal is a 5 Volt square wave with the frequency of the sample rate, of which the harmonics go up to far above 500 kHz. To avoid voltage loss and reflections, both the cable itself and the terminating resistor at the end of the chain should have an impedance of 75 Ohm. If the voltage is too low, synchronization will fail. High frequency reflection effects can cause both jitter and sync failure. Unfortunately there are still many devices on the market, even newer digital mixing consoles, which are supplied with a word clock output that can only be called unsatisfactory. If the output breaks down to 3 Volts when terminating with 75 Ohms, you have to take into account that a device, of which the input only works from 2.8 Volts and above, does not function correctly already after 3 meter cable length. So it is not astonishing that because of the higher voltage, word clock networks are in some cases more stable and reliable if cables are not terminated at all. Ideally all outputs of word clock delivering devices are designed as low impedance types, but all word clock inputs as high impedance types, in order to not weaken the signal on the chain. But there are also negative examples, when the 75 Ohms are built into the device and cannot be switched off. In this case the network load is often 2 x 75 Ohms, and the user is forced to buy a special word clock distributor. Note that such a device is generally recommended for bigger studios. The Fireface's word clock input can be high-impedance or terminated internally, ensuring maximum flexibility. If termination is necessary (e.g. because the Fireface is the last device in the chain), activate the option *Termination* in the Settings dialog (see chapter 22.1). In case the Fireface UCX resides within a chain of devices receiving word clock, plug a T-adapter into its BNC input jack, and the cable supplying the word clock signal to one end of the adapter. Connect the free end to the next device in the chain via a further BNC cable. The last device in the chain should be terminated using another T-adapter and a 75 Ohm resistor (available as short BNC plug). Of course devices with internal termination do not need T-adaptor and terminator plug. Due to the outstanding SteadyClock technology of the Fireface UCX, it is recommended not to pass the input signal via T-adapter, but to use the Fireface's word clock output instead. Thanks to SteadyClock, the input signal will both be freed from jitter and - in case of loss or drop out – be reset to a valid frequency. # 22.4 Operation The green Lock LED on the front (STATE) will light up as soon as a word clock signal is detected. To change to word clock as clock source, activate the *Clock Source Word* in the field *Clock Mode* within the Settings dialog. The status display *Current* changes to *Word* as soon as a valid signal is present at the BNC jack. This message has the same meaning as the green state LED, but appears on the monitor, i.e. the user can check immediately whether a valid word clock signal is present and is currently being used. # **User's Guide** # Fireface UCX **Stand-Alone Operation** # 23. Operation and Usage # 23.1 General The Fireface UCX has an internal memory to permanently store all configuration data. The data is stored directly after any change, and is loaded at power-on. Saved settings are: # **Settings dialog** Sample rate, clock mode Master/Slave, configuration of the channels and the digital I/Os. #### **TotalMix** The complete mixer state. This also improves the clock situation immediately after power-on, avoiding wrong clocking and noise disturbances in a complex setup, caused by wrong synchronization. While the three rotary encoders and the clear colour display of the Fireface UFX are missing in the Fireface UCX, it still uses the same engine inside, and subsequently has all the stand-alone features found in the UFX. The full Mackie Protocol and MIDI remote support makes it possible to use the unit even without connected computer, still being able to change many parameters. Additionally the internal memory can permanently store six more states of the unit. Therefore the Fireface UCX can transform into totally different devices by the simple click of a button. Finally, as TotalMix can also be controlled via MIDI (see chapter 28.6, *Stand-Alone MIDI Control*), the examples shown below are really useful applications that you should keep in mind. # 23.2 Front Panel Operation The knob on the front, a so called rotary encoder, serves to set the input gains and output volumes directly at the unit. The encoder operates either in CHANNEL or in LEVEL mode. Pushing the knob changes between these modes. The currently active mode is indicated by a green LED. Pushing the knob repeatedly gives quick access to PH (Phones) for a fast access of the main volume control. In CHANNEL mode, selection of the desired channel is done by turning the knob. The following strings will be shown in the display: *i.1* to *i.4* Mic input 1 up to instrument/line input 4 L.1 to L.6 Line output 1 up to line output 6 PH Phones (line output 7/8) SP SPDIF output A.1 to A.8 ADAT output 1 up to 8 SU Load Setup ## i.1 / i.2 The gain of the two microphone inputs 1/2 can be defined in the range of 10 dB up to 65 dB in steps of 1 dB. Additionally the setting 0 dB is available. The gain change is performed in the analog domain. # i.3 / i.4 The gain of the two instrument/line inputs 3/4 can be defined in the range of 0 dB up to 12 dB in steps of 0.5 dB. The x.5 dB values are signalled by a dot to the right. The gain change is performed in the digital domain. ## L.1 to L.6, PH, SP, A.1 to A.8 The output levels of these outputs can be defined in the range of +6 dB down to -58 dB in steps of 1 dB. Values below 0 dB are indicated by a dot to the right. The lowest value is maximum attenuation (mute, shown as **oo.**). The gain change is performed digitally by TotalMix. #### Panorama Mode Pushing the knob in LEVEL mode for a second changes to Panorama mode. The display will show CE for Center, LL for full left and rr for full right. When the value is not changed during one second the unit returns to LEVEL mode automatically. <u>Note</u>: It is not possible to change the channel mode stereo/mono at the unit. This action has to be performed in TotalMix. #### **Load Setup** The last option in CHANNEL mode, SU, has 6 user setups and two factory presets. Setups include the whole state of the unit and are loaded into the unit from TotalMix FX, menu *Options, Store current State into Device, Setup 1 to 6.* To load a setup select SU on the unit, push the encoder knob and turn it. The display shows 1 to 6, FA, Ad and CC (the latter only if the unit is not connected to a computer). Select the desired setup, then push the encoder knob for one second. The display will show i.o. (german for ok) and return to the SU CHANNEL mode. In case the selected memory slot is empty the display will show n.o. (not ok). **FA** loads a simple factory preset that equals a Total Reset of TotalMix. There is no monitoring of the inputs, I/O levels and gains are set to factory default. FA also resets the unit from CC mode back to normal operation. Ad turns the UCX into an 8 channel AD/DA converter. Analog inputs are routed to ADAT out and vice
versa. Please note that loading Setups is a stand-alone feature. If done online only the parameters that can be changed at the front of the unit are updated, means no routing will change, only gains and volumes of the I/Os are affected. <u>Note</u>: The MIDI remote function can not be turned on or off directly at the unit. This is done online via the Option *Enable MIDI Control* in TotalMix FX. The current state is kept when changing from online to offline. Additionally the current state is stored in the six Setups, the unit's own memory. # 23.3 Class Compliant Mode When the unit is not connected to a computer the Load Setup option **CC** is available. Pushing the encoder knob for one second will show *on* in the display. The unit had then loaded a different firmware and operates as *Class Compliant* device. In this mode it can be used under Mac OS X without any driver, as well as connected to iPhone and iPad. More details are found in chapter 29 and up (Class Compliant Mode). To use the unit normally under Windows and Mac, the state CC *on* has to be switched to *oF* by pushing the knob again at any time. # 24. Examples #### 24.1 8-Channel AD/DA Converter TotalMix' super-flexible routing functions make it easy to turn the UCX into an 8-channel AD/DA converter. The easiest way to do this is by loading the Setup Ad while the UCX is offline. Read above how to do this. Still easy and giving many more options is to build the setup yourself. For a clean start perform a Total Reset from the Options menu. Then select the ADAT Output 1/2 in the third row, and pull up the faders of the Mic input 1/2 in the first row. Then select ADAT 3/4, pull up Analog 3/4 and so on until all 8 analog inputs are routed to the corresponding 8 ADAT channels. Now do the same for the analog outputs, route all ADAT inputs to these one after the other. A monitoring of all or selected I/Os can be easily set up for the SPDIF output, or as analog mixdown on one of the analog outputs. # 24.2 2-Channel Mic Preamp Use TotalMix to route the two microphone inputs directly to the analog outputs. This turns the Fireface UCX into a 2-channel microphone preamp. The AD- and DA-conversion will cause a small delay of the audio signal of around 0.086 ms (at 192 kHz, see chapter 37.2). But this is nothing to worry about, as it is the same delay that would be caused by changing the microphone's position by about 2.5 centimeter (1 inch). #### 24.3 Monitor Mixer TotalMix allows ANY configuration of all I/Os of the Fireface. For example, set up the device as monitor mixer for 8 analog signals, 8 digital via ADAT and 2 via SPDIF. Additionally, TotalMix lets you set up ANY submixes, so all existing outputs can be used for different and independent monitorings of the input signals. The perfect headphone monitor mixer! # 24.4 Digital Format Converter As TotalMix allows for any routing of the input signals, the Fireface UCX can be used as ADAT to SPDIF/AES converter, ADAT to two SPDIF splitter, two SPDIF to ADAT converter, and SPDIF coax to optical converter. # 24.5 Analog / Digital Routing Matrix The Matrix in TotalMix enables you to route and link all inputs and outputs completely freely. All the above functionalities are even available simultaneously, can be mixed and combined in many ways. Simply said: the Fireface UCX is a perfect analog/digital routing matrix! # 24.6 External Interface for Apple's iPad® and iPhone® In Class Compliant mode the UCX performs as analog and digital front-end for Apple's iPad (all versions), and since iOS 7 also for the iPhone. With this not only flexible high-grade inputs for line and microphone are available for these devices, but also high-quality analog outputs. Sequencer or synthesizer apps can be played with normal keyboards via MIDI. The sounds generated within the mobile devices are directly PA compatible when played over the balanced line outputs of the UCX. See chapter 29 for more details. # **User's Guide** # Fireface UCX ▶ TotalMix FX # 25. Routing and Monitoring # 25.1 Overview The Fireface UCX includes a powerful digital real-time mixer, the *Fireface UCX mixer*, based on RME's unique, sample-rate independent **TotalMix** technology. It allows for practically unlimited mixing and routing operations, with all inputs and playback channels simultaneously, to any hardware outputs. **TotalMix FX** adds 3-band parametric Equalizer, Low Cut, Echo, Reverb, Compressor, Expander and Auto Level. Here are some typical applications for TotalMix: - Setting up delay-free submixes (headphone mixes). The Fireface UCX allows for up to 9 fully independent stereo submixes. On an analog mixing desk, this would equal 18 Aux sends. - Unlimited routing of inputs and outputs (free utilisation, patchbay functionality). - Distributing signals to several outputs simultaneously. TotalMix offers state-of-the-art splitter and distributor functions. - Simultaneous playback of different programs via a single stereo output. The ASIO multiclient driver supports the usage of several programs at the same time. When done on different playback channels TotalMix provides the means to mix and monitor these on a single stereo output. - Mixing of the input signal to the playback signal (complete ASIO Direct Monitoring). RME is not only the pioneer of ADM, but also offers the most complete implementation of the ADM functions. - Integration of external devices. Use TotalMix to insert external effects devices, be it in the playback or in the record path. Depending on the current application, the functionality equals insert or effects send and effects return, for example as used during real-time monitoring when adding some reverb to the vocals. Every single input channel, playback channel and hardware output features a Peak and RMS level meter, calculated in hardware. These level displays are very useful to determine the presence and routing destinations of the audio signals. For a better understanding of the TotalMix mixer you should know the following: - As shown in the block diagram (next page), the record signal usually stays un-altered. TotalMix does not reside within the record path, and does not change the record level or the audio data to be recorded (exceptions: EQ+D for Record and Loopback mode). - The hardware input signal can be passed on as often as desired, even with different levels. This is a big difference to conventional mixing desks, where the channel fader always controls the level for all routing destinations simultaneously. - The level meters of input and playback channels are connected pre-fader, to be able to visually monitor where a signal is currently present. The level meters of the hardware outputs are connected post-fader, thus displaying the actual output level. ## 25.2 The User Interface The visual design of the TotalMix mixer is a result of its capability to route hardware inputs and software playback channels to any hardware output. The Fireface UCX has 18 input channels, 18 software playback channels, and 18 hardware output channels: TotalMix can be used in the above view (View Options **2 Row**). However, the default is a vertical alignment in three rows as known from an Inline desk, so that the row *Software Playback* equals the *Tape Return* of a real mixing desk: - Top row: Hardware inputs. The level shown is that of the input signal, i.e. fader independent. Via fader and routing menu, any input channel can be routed and mixed to any hardware output (bottom row). - Middle row: Playback channels (playback tracks of the audio software). Via fader and routing menu, any playback channel can be routed and mixed to any hardware output (bottom row). - Bottom row: Hardware outputs. Here, the total level of the output can be adjusted. This may be the level of connected loudspeakers, or the level of any submix. **Usage in mode Submix View (Default):** simply click on the hardware output channel where you want to have an audio signal. This channel turns brighter, means it is selected as current submix. Now move the faders up from all sources - input and playback channels - that you want to hear at the submix output. The following chapters explain step by step all functions of the user interface. ## 25.3 The Channels A single channel can be switched between mono and stereo mode. The mode is set in the channel settings. **Channel name.** The name field is the preferred place to select a channel by a mouse click. A double click opens a dialog to assign a different name. The original name will be shown when activating the option *Names* in the View Options. **Panorama.** Routes the input signal freely to the left and right routing destination (lower label, see below). The level reduction in center position is -3 dB. **Mute and Solo.** Input channels and playback channels each have a mute and solo button. **Numerical level display.** Shows the current RMS or Peak level, updated twice per second. OVR means overload. The setting Peak/RMS is changed in the View Options. **Level meter.** The meter shows both peak values (zero attack, 1 sample is enough for a full scale display) by means of a yellow line, and mathematically correct RMS values by means of a green bar. The RMS display has a relatively slow time constant, so that it shows the average loudness quite well. Overs are shown in red at the top of the bar. In the Preferences dialog (F2) the Peak Hold time, the over detection and the RMS reference can be set. **Fader.** Determines the gain/level of the signal routed to the current routing destination (lower label). Please note that this fader is not *the* fader of the channel, but only the fader of the current routing. Compared to a standard mixing desk TotalMix does not have a channel fader, but only Aux Sends, as many as there are hardware outputs. Therefore TotalMix can create as many different submixes as there are hardware outputs. This concept is understood best in the Submix View, but more on that later. Below the fader the **Gain**
is shown in a numerical display field, according to the current fader position. The fader can be: - dragged with the left mouse button pressed - moved by the mouse wheel - Set to 0 dB and -∞ by a double click. The same happens with a single click plus held down Ctrl key. - adjusted in fine mode by mouse drag and mouse wheel when holding the Shift key down A Shift-click on a fader adds the fader to the **temporary fader group**. All faders now marked yellow are ganged, and move simultaneously in a relative way. The temporary fader group is deleted by a click on the F symbol in the upper right of the window. 0 The **arrow symbol** at the bottom minimizes the channel width to that of the level meters. Another click maximizes it again. A mouse click with held Ctrl key causes all channels to the right to enlarge and minimize at once. The lowest field shows the current **routing target**. A mouse click opens the routing window to select a routing target. The list shows all activated routings of the current channel by arrows in front of the listed entries. The current one is shown in bold letters. An arrow is only shown with an activated routing. A routing is seen as activated when audio data is sent. As long as the fader is set to $-\infty$ the current routing will be shown in bold letters, but not have an arrow in the front. **Trim Gain.** After a click on the **T** symbol one channel's faders are all synchronized. Instead of changing only a single routing the fader affects all the channel's active routings. For a better overview the faders currently not visible are indicated by orange triangles beside the fader path. When moving the fader the triangles also move to a new position, equalling the faders new settings. Note that the fader button is set to the highest routing gain of all routings so that best control is offered. The gain (fader knob position) of the currently active routing (the submix selected in the third row) is shown as white triangle. <u>Background</u>: TotalMix has no fixed channel fader. In case of the Fireface UCX there are 9 stereo Aux sends, shown alternately as single fader within the channel strip. The high number of Aux sends enables multiple and fully independent routings. In some cases it is necessary to synchronize the gain changes of these routings. An example is the Post fader function, where a change of the singer's volume shall be performed identical to the volume change of the signal sent to the reverb device, so that the reverb level keeps its relation to the original signal. Another example is the signal of a guitar that is routed to different submixes, means hardware outputs, which gets much too loud during the solo part, and therefore needs to be reduced in volume on all outputs simultaneously. After a click on the Trim button this can be done easily and with a perfect overview. In the View Options / Show the function Trim Gains can be globally switched on and off for all channels. The global Trim mode is recommended when using TotalMix FX as live mixing desk. # 25.3.1 Settings A click on the tool symbol opens the channel's **Settings** panel with differing elements. For example the option Inst exists only in input channels 3 and 4, and the ADAT channels do not offer the phantom power option. **Stereo.** Switches the channel to mono or stereo mode. **48V.** Activates phantom power at the corresponding input. Serves as power supply for high quality condenser mics. This option should stay off with other sources to prevent failure by spikes. Inst. Switches inputs 3 and 4 individually to Instrument (Hi-Z) mode. **Gain.** Sets the gain for the four front inputs. The knob can be adjusted by dragging the mouse or by the mouse wheel. This also works when the mouse has been moved over the two gain displays. Then the gain can be changed separately for left and right channel, even when the channel is in stereo mode. **Level.** Sets the reference level for inputs 3/4 and 5 to 8. The available settings are -10 dBV, +4 dBu and LoGain. **AutoSet.** Activates an automatic gain reduction preventing overloads caused by too high gain settings. See chapter 19.2 for details. Width. Defines the stereo width. 1.00 equals full stereo, 0.00 mono, -1.00 swapped channels. **FX Send.** Setting the level of the signal sent to the FX bus which feeds Echo and Reverb. The current setting is also visible with closed channel settings, because knob and small fader are always synchronized. To make this function as useful as possible FX Send is locked to the highest submix, thus imitating the *Aux Post Fader* function of a standard mixing desk. When moving the big fader both knob and small fader will also move. This way the reverb signal will always have the same relation to the dry signal. The level of the signal sent to the effects can be controlled by the *FX In* level meters of the FX window. It becomes visible after a click on FX in the View Options. **MS Proc.** Activates M/S processing within the stereo channel. Monaural information is sent to the left channel, stereo information to the right. **Phase L.** Inverts the phase of the left channel by 180°. Phase R. Inverts the phase of the right channel by 180°. Note: the functions Width, MS Proc, Phase L and Phase R affect all routings of the respective channel. Besides Stereo/Mono, Phase L und Phase R the settings of the Hardware Outputs have further options: **Level.** Sets the reference levels of the analog Line outputs. The available settings are -10 dBV, +4 dBu and HiGain. Channels 7/8 (Phones) have their own independent setting. **FX Return.** The effect signal (Echo and Reverb) is mixed to the respective hardware output by the duo knob/small fader. **Talkback.** Activates this channel as receiver and output of the Talkback signal. This way Talkback can be sent to any outputs, not only the Phones in the Control Room section. Another application could be to send a certain signal to specific outputs by the push of a button. **No Trim.** Sometimes channels need to have a fixed routing and level, which should not be changed in any case. An example is the stereo mixdown for recording of a live show. With *No Trim* active, the routing to this output channel is excluded from the Trim Gains function, therefore is not changed unintentionally. **Loopback.** Sends the output data to the driver as record data. The corresponding submix can be recorded then. This channel's hardware input sends its data only to TotalMix, no longer to the recording software. Another difference to the input and playback channels is the **Cue** button instead of Solo. A click on Cue sends the respective Hardware Output's audio to the **Main** Out, or any of the Phones outputs (option *Assign / Cue to* in the Control Room section). With this any hardware output can be controlled and listened to through the monitoring output very conveniently. # 25.3.2 Equalizer A click on EQ opens the **Equalizer** panel. It is available in all input and output channels, and affects all routings of the respective channel (pre fader). The panel includes a low cut and a 3-band parametric equalizer which can be activated separately. **EQ.** Activated by the EQ button. **Type.** Band 1 and 3 can operate in peak (bell) or shelf (shelving) mode. The middle band is fixed to peak mode. Band 3 can also operate as *Hi Cut* (low pass filter), especially useful for LFE and subwoofer purposes. **Gain.** All three bands can change their amplification between +20 dB to -20 dB. **Freq.** The center frequency of the filters is adjustable between 20 Hz and 20 kHz. While in peak mode the center frequency is adjusted, in shelf mode the cut-off point (-3 dB) will be changed. **Q.** The Quality factor of the filter is adjustable from 0.7 (wide) to 5.0 (narrow). **Lo Cut.** Activated by the button Lo Cut. The slope of the high-pass filter is adjustable between 6, 12, 18 and 24 dB per octave. The cut-off point (-3 dB) is adjustable between 20 Hz and 500 Hz. The frequency graphics give a precise overview of the filter results. Overlapping filters influence each other. This can be used to achieve more than 20 dB amplitude, or to generate difficult frequency response optimizations. Note: TotalMix has an internal headroom of 24 dB. Extreme boosts with overlapping filters can therefore cause an internal overload. In any case such an overload is displayed by the Over LED of the channel's level meter. **Preset.** Settings of the EQ and the Low Cut can be stored, loaded, and copied between channels at any time. A click on Preset opens a menu with several entries: - Recall: Presets stored before by the user can be selected and loaded - ➤ Save to: There are 16 storage places available (EQ Preset 1 to 16) - Import: Loads a previously stored TM EQ file (.tmeg) - Export: Stores the current state as TM EQ file (.tmeq) - Factory: Includes 14 examples for the creative use of Low Cut and Equalizer - Reset: Resets the Low Cut and EQ to have zero influence (Gain 0 dB) **Copy between channels:** The EQ Preset menu of all channels is identical. If an EQ setup is stored via *Save to* on one of the 16 storage places, it is then also available in any other channel via Recall. **Copy between Snapshots:** The Presets are not saved in Snapshots, therefore do not change when a different Snapshot is loaded. Presets are saved in Workspaces and also loaded with these. **Copy between Workspaces:** is done by the export and import function of the Preset menu. Important and useful Presets should always be saved as TM EQ file, so that they can not get lost even on accidental overwrite. **Factory Presets:** loaded like all Presets the settings of both Low Cut and EQ simultaneously. The current state, On or Off, is neither saved nor activated on load. With this a preset can be loaded anytime, but will not become active before the user decides to switch the EQ and/or LC on – except they had been active already before the load process. For this reason some Factory
Presets have special names. For example Telephone (LC+EQ) will sound much better when the LC has been activated additionally to the EQ, as the LC is set to an unusual high frequency of 500 Hz here. # 25.3.3 Dynamics A click on D opens the **Dynamics** panel with Compressor, Expander and Auto Level. They are available in all input and output channels, and affects all routings of the respective channel. **Dynamics.** Activated by this button. **Thres.** Threshold where Compressor or Expander start to work. The Compressor is adjustable from -60 dB to 0 dB, the Expander is adjustable from -99 dB to -30 dB. **Ratio.** Ratio of input to output signal. Defines the intensity of the signal processing. Adjustable from 1 to 10. **Gain.** Gain stage to compensate a loss in level caused by the Compressor. Adjustable from -30 to +30 dB. With inactive Compressor (Threshold 0 dB, Gain 1:1) this function can also be used as universal digital gain stage. **Attack.** Defines the rise time for the control voltage of Compressor/Expander. Adjustable from 0 ms to 200 ms. **Release.** Defines the release time for the control voltage of Compressor and Expander. Adjustable from 100 ms to 999 ms. The amplitude graphics give a precise overview of the level changes caused by the current settings of Compressor and Expander. The white dot shows the level of the input signal and with this whether the signal is within the processing range or not. The small light blue lines in the level meter show the currently active gain reduction. Settings for these *Dynamic Meters* are found in the Preferences dialog (F2) Auto Level. Activated by this button. Max. Gain. Defines the maximum amplification of the input signal. Adjustable from 0 dB to 18 dB **Headroom.** To minimize short-time overloads and clipping of the signal peaks Auto Level can be set to operate at a fixed offset to 0 dBFS. Adjustable from 3 dB to 12 dB. **Rise Time.** Defines the speed of a level increase after a level reduction. Adjustable from 0.1 s to 9.9 s. **Preset.** Includes the same functions as described on the previous page for the Equalizer. The names of the Factory Presets make clear whether Compressor, Auto Level or both (C+A) have to be switched on. Dynamics Preset * ## 25.4 Section Control Room In the section Control Room the menu *Assign* is used to define the **Main Out** which is used for listening in the studio. For this output the functions Dim, Recall, Mono, Talkback, External In and Mute FX are automatically applied. On the unit the VOLUME knob also follows this assignment. Additionally the channel will be shifted from the Hardware Outputs into the Control Room section, and renamed *Main*. The same happens when assigning Main Out B or the Phones. The original name can be displayed by the function *Names* in the View Options – *Show* at any time. Phones 1 to 4 will have Dim (set in Settings) and a special routing applied when Talkback is activated. Also putting them beside the Main Out increases the overview within the output section greatly. Note: Phones 1 to 4 can be freely assigned in TotalMix FX. As the Phones output on the unit is hardwired to channels 7/8, selecting PH at the unit will always change the output level of channels 7/8, no matter which channels have been selected for Phones in TotalMix FX. **Dim.** The volume will be reduced by the amount set in the Settings dialog (F3). Recall. Sets the gain value defined in the Settings dialog. **Speaker B.** Switches playback from Main Out to Main Out B. The faders of the channels Main and Speaker B can be ganged via Link. Mono. Mixes left and right channel. Useful to check for mono compatibility and phase problems. **Talkback.** A click on this button will dim all signals on the *Phones* outputs by an amount set up in the Preferences dialog. At the same time the control room's microphone signal (source defined in Preferences) is sent to the *Phones*. The microphone level is adjusted with the channel's input fader. **External Input.** Switches Main monitoring from the mix bus to the stereo input defined in the Settings dialog (F3). The relative volume of the stereo signal is adjusted there as well. **Mute FX.** Mutes Reverb and Echo on the Main Out, to hear the mix without those effects. **Assign.** Allows to define the Main Out, Main Out B (Speaker B), and up to four Phones outs. The choice is limited to ADAT 1/2, as at 192 kHz the other ADAT channels are not available anymore. The output for the Cue signal, which is usually Main, can also be set to one of the Phones outputs. This setting also controls the PFL monitoring. Main M CUE 20.0 Mono Talkback M CUE Cue/PFL to # 25.5 The Control Strip The Control Strip on the right side is a fixed element. It combines different functions that are either required globally, or constantly used, and therefore should not be hidden in a menu. **Device selection.** Select the unit to be controlled in case more than one is installed on the computer. **FX - DSP Meter.** Shows the DSP load caused by activated EQ, Low Cut, Compressor, Auto Level, Echo and Reverb. The DSP of the Fireface UCX has an automatic load limiter. If no DSP resources are left further effects can not be activated. When switching to DS and QS modes effects will be deactivated automatically until the DSP is not overloaded anymore. **Undo / Redo.** With the unlimited Undo and Redo changes of the mix can be undone and redone, at any time. Undo/Redo does not cover graphical changes (window size, position, channels wide/narrow etc.), and also no changes to the Presets. The accidental overwrite of an EQ Preset can not be made undone. Undo/Redo also operates across Workspaces. Therefore a completely differently set up mixer view can be loaded via Workspace, and with a single click on Undo the previous internal mixer state is returned – but the new mixer view stays. #### Global Mute Solo Fader. **Mute.** Global Mute operates in a pre fader style, muting all currently activated routings of the channel. As soon as any Mute button is pressed, the *Mute Master* button lights up in the Control Strip area. With this button all selected mutes can be switched off and on again. One can comfortably set up a mute group or activate and deactivate several mute buttons simultaneously. **Solo.** As soon as any Solo button is pressed, the *Solo Master* button lights up in the Control Strip area. With this button all selected Solos are switched off and on again. Solo operates as Solo-in-Place, post fader style, as known from common mixing desks. A typical limitation for mixing desks, Solo working only globally and only for the Main Out, does not exist in TotalMix. Solo is always activated for the current submix only. **Fader.** A Shift-click on a fader adds the fader to the **temporary fader group**. All faders now marked yellow are ganged, and move simultaneously in a relative way. The temporary fader group is deleted by a click on the F symbol. # 25.5.1 View Options **View Options.** This area combines different functions of routing, the level meters and the mixer view. # **Routing Mode** - > **Submix.** The Submix view (default) is the preferred view and delivers the quickest overview, operation and understanding of TotalMix. The click on one of the Hardware Output channels selects the respective submix, all other outputs are darkened. At the same time all routing fields are set to this channel. With Submix view, it is very easy to generate a submix for any output: select the output channel, adjust the fader and pans of first and second row finished. - Free. The Free view is for advanced users. It is used to edit several submixes simultaneously, without the need to change between them. Here one works with the routings fields of the input and playback channels only, which then show different routing destinations. #### **Level Meters** - ▶ Post FX. Switches all level meters before (pre) or after (post) the effects. Level changes by these can be easily checked using this feature. Additionally the input signal can be checked for overloads. It is recommended to use Post FX as default setting, as the extreme reduction of a signal by LC/EQ is very seldom. Also all over displays of all level meters operate both pre and post, efficiently preventing overloads going unnoticed. - **RMS.** The numerical level display in the channels displays peak or RMS. #### **Show** - > FX. Opens the window to set up the effects Reverb and Echo. - ➤ **Trim.** Activates all Trim buttons on all channels. TotalMix thus behaves like a conventional, simple mixing desk. Each fader affects all active routings of the channel simultaneously, as if the fader were a trim-pot in the hardware input. - **2 Row.** Switches the mixer view to 2 rows. Hardware Inputs and Software Playbacks are placed side by side. This view saves a lot of space, especially in height. - ➤ Names. Display of the original names of channels when they had been renamed by the user. # 25.5.2 Snapshots - Groups **Snapshots.** Snapshots include all mixer settings, but no graphical elements like window positions, window size, number of windows, visible EQs or Settings, scroll states, Presets etc. Only the state wide/narrow of the channels is registered. Moreover the Snapshot is only temporarily stored. Loading a Workspace causes the loss of all stored Snapshots, when these all had not been saved before in a Workspace, or separately via *File / Save Snapshot as*. Via File / Load Snapshot the mixer states can be loaded individually. Eight different mixes can be stored under individual names in the Snapshot section. A click on any of the eight buttons loads the corresponding Snapshot. A double click on the name field opens the dialog *Input Name* to edit the name. As soon as the mixer state is changed the button starts flashing. A click on Store lets all buttons flash, whereby the last loaded one, the base of the current state, flashes inversely. The storage finishes by clicking the desired button
(means storage place). The storage process is exited by another click on the flashing Store button. The area Snapshots can be minimized by a click on the arrow in the title bar. **Groups.** The area Groups provides 4 storage places each for fader, mute and solo groups. The groups are valid per Workspace, being active and usable in all 8 Snapshots. But with this they are also lost when loading a new workspace, in case they have not been saved before in a different Workspace. $\underline{\text{Note}}$: The Undo function will help in case of an accidental overwrite or deletion of the groups. When setting up a fader group make sure to not add faders that are at the top or lowest position, except all faders of that group have this position. The Mute groups operate – other than the global mute – exclusively for the current routing. This way you can not mute signals on all outputs unintentionally. Instead signals can be muted on specific submixes by the push of a button. A solo group operates exactly like the global solo, signals outside the current routing are not affected. ## 25.5.3 Channel Layout - Layout Presets To maintain overview within TotalMix FX channels can be hidden. Channels can also be excluded from being remoted. Under *Options / Channel Layout* a dialog lists all I/Os with their current state. Selecting one or several channels enables the options to the right: - ➤ **Hide Channel in Mixer/Matrix.** The selected channels are no longer shown in TotalMix FX, nor are they available via MIDI or OSC remote control. - Hide Channel in MIDI Remote 1-4. The selected channels are hidden for MIDI remote (CC and Mackie Protocol). - Hide Channel in OSC Remote 1-4. The selected channels are hidden for OSC remote control. Hidden channels in Mixer/Matrix are still fully functional. An existing routing/mixing/FX processing stays active. But as the channel is no longer visible it can not be edited anymore. At the same time the hidden channels are removed from the list of remote controllable channels, to prevent them from being edited unnoticed. Hidden channels in *MIDI Remote x* are removed from the list of remote controllable channels. Within an 8-channel block of a Mackie compatible control they are skipped. The control therefore is no longer bound to consecutive orders. For example it will control channels 1, 2, and 6 to 11, when channels 3 to 5 are hidden. The same can be done for OSC With unnecessary channels made invisible for the OSC remote the more important channels are available as one block on the remote. The dialog can be called directly from TotalMix by a right mouse click on any channel. The corresponding channel will then be preselected in the dialog. Rows Inputs, Playbacks and Outputs are set up individually by the tabs at the top. *Active* indicates currently available channels. At higher sample rates many ADAT channels are no longer active. *In Use* shows which channels are currently used in the mixing process. In the above example the SPDIF input channel has been made invisible. When SPDIF is not used this is an easy way to remove it from the mixer completely. A more complex setup would be to only show all channels of the drum section, the horn section or the violins. After finishing those settings the whole state can be stored as **Layout Preset**. A click on *Store* and the desired memory slot makes the current channel layout recallable anytime. The button *All* makes all channels temporarily visible again. With a simple click on a button it will then be possible to easily switch views of only the channels involved with the mixing of the drum section, the horn section, the violins, or any other useful view. An optimized remote layout can be activated here as well, with or without visible changes. Double-click the default slot name to enter any other name. Layout Presets are stored within the Workspace, so make sure to save the current state before loading a different Workspace! The button *Sub* activates another useful special view. When in *Submix view*, Sub will cause all channels to disappear that are not part of the currently selected Submix/Hardware Output. Sub temporarily shows the mix based on all channels from Inputs and Playback row, independent from the current Layout Preset. That makes it very easy to see and to verify which channels are mixed/routed to the current output. Sub makes checking and verifying of mixes, but also the mix editing itself, a lot easier, and maintains perfect overview even with lots of channels. ## 25.5.4 Scroll Location Markers Another feature to improve overview and working with TotalMix FX are scroll location markers (mixer view only). These are displayed automatically when the horizontal size of the TotalMix FX window is smaller than the channel display requires. Shown on the right side of the scrollbar of each row they have four elements: - Arrow to the left. A left mouse click let the channels scroll to the very first one, or most left. - 1. Marker number 1. Scroll to the desired position and perform a right mouse click on 1. A dialog comes up with precise information. Once stored, a left mouse click will scroll the channels to the stored position. - **2.** Marker number 2. See 1 for details. - Arrow to the right. A left mouse click let the channels scroll the last one, or most right. Location markers are stored in the Workspace. # **Application Examples** While originally added to improve navigation in the HDSPe MADI FX (having 196 channels that never fit on any screen), the scroll location markers are also helpful with units having much less channels: - When the TotalMix FX window is intentionally made small in width, so only a few channels are shown. - When some or all EQ or Dynamics panels are open. Then all relevant settings are always visible, but require a lot of space horizontally. ## 25.6 Reverb and Echo A click on FX in the *View Options / Show* brings up the FX panel. Here all parameters for the effects Reverb and Echo are adjusted. Reverb. Activated by the On button. **Type.** Lists different reverb algorithms for selection. Available are: - Rooms 1 4. Algorithm for room simulation with different tonal colours. Room 1 and 2 sound dry and small, Room 3 and 4 brilliant and a bit bigger. - ➤ **Envelope.** Reverb effect in multitap technology, where the volume course (envelope) is freely adjustable. - Gated. Simpler version of the Envelope reverb for cut reverb effects. - ➤ Classic. Classic feedback-based reverb with comb filter, generating both the typical sound and the very long reverb times. ## **General Settings** **PreDelay.** Delay of the reverb signal. Adjustable from 0 ms up to 999 ms. **Low Cut.** High-pass filter *before* the reverb generation, removes low frequency signals which should not cause a reverb sound. Adjustable from 20 Hz up to 500 Hz. **Smooth.** Softens the reverb effect, affects stereo width, density and sound colour. Adjustable from 0 up to 100. **Width.** Adjusts the stereo width of the reverb signal from 100 (stereo) to 0 (mono). **Volume.** Adjusts the level of the reverb effects signal sent to the FX return bus. # Pre Delay Low Cut 20k High Cut 200 Room Scale 100 0.90 Smooth Width -9.0 Volume Delay Time 0.70 Delay Time 0.89 Width -15.0 EX EX Reverb # **Special Settings for Room 1-4** **High Cut.** Low-pass filter *after* the reverb generation. A reduction of the treble often lets the reverb sound more natural. Adjustable from 5 kHz up to 20 kHz. **Room Scale.** Determines the size of the room, thus changing density and length of the reverb effect. Adjustable from 0.5 up to 2.0. ## Special Settings for Envelope and Gated **High Cut.** Low-pass filter *after* the reverb generation. A reduction of the treble often lets the reverb sound more natural. Adjustable from 5 kHz up to 20 kHz. **Attack.** Length of time for the volume increase of the reverb signal. Also called rise time. Adjustable from 5 ms up to 400 ms. **Hold.** Length of time for the fixed volume part of the reverb signal. Adjustable from 5 ms up to 400 ms. **Release.** Length of time for the volume decrease of the reverb signal. Adjustable from 5 ms up to 400 ms. # **Special Settings for Classic** **Reverb Time.** Sets the duration of the reverb referenced to a volume drop of 20 dB. Adjustable from 0.1 s up to 9.9 s. **High Damp.** Sets the treble damping over time for the reverb signal. In principle, this is a low-pass filter. Because of the operation principle of the Classic reverb it shows a slightly different behaviour. Adjustable from 5 kHz up to 20 kHz. **Echo.** Activated by the On button. **Type.** Lists different echo algorithms for selection. Available are: - > Stereo Echo. Separated echo generators on left and right channel. As a result the echo follows the sound source within the stereo field. - Stereo Cross. Echo generator on left and right channel with cross coupled feedback which is only working for the stereo parts of the input signal. In case the input signal is only left or right the Stereo Cross acts exactly like the Pong Echo. - **Pong Echo.** Generates an echo that jumps between left and right channel, independent from the source signal's stereo position. ## **Settings** **Delay Time.** Sets the delay time for the first echo. **Feedback.** Feedback to produce further echoes. Width. Adjusts the stereo width of the echo signal from 100 (stereo) to 0 (mono). **Volume.** Adjusts the level of the echo effects signal sent to the FX return bus. **Preset.** Settings of the Reverb and the Echo can be stored, loaded, and copied between channels at any time. A click on Preset opens a menu with several entries: - Recall: Presets stored before by the user can be selected and loaded - ➤ Save to: There are 16 storage places available (Reverb/Echo Preset 1 to 16) - Import: Loads a previously stored TM FX Reverb file (.tmrv) or a TM FX Echo file (.tmeo) - Export: Stores the current state as TM FX Reverb file (.tmrv) or as TM FX Echo file (.tmeo) - ➤
Factory: Includes 10 examples for the configuration of the Reverb - > Reset: Resets the Reverb or Echo - ➤ **Rename:** The Presets 1 to 16 can be renamed. The changes will be shown in both lists Recall and Save to. #### 25.7 Preferences The dialog Preferences can be opened via the *Options* menu or directly via F2. #### **Level Meters** - Full scale samples for OVR. Number of consecutive samples to trigger an over detection (1 to 10). - Peak Hold Time. Hold time of the peak value. Adjustable from 0.1 up to 9.9 s. - RMS +3 dB. Shifts the RMS value by +3 dB, so that full scale level is identical for Peak and RMS at 0 dBFS. #### **Mixer Views** - FX Send follows highest Submix. Locks the FX Send knob to the channel fader. As TotalMix supports multiple routings per channel, a definition is needed which fader (only one is visible) is the one that FX Send will follow. This is always the one with the highest fader position, means the highest gain. - ➤ Center Balance/Pan when changing Mono/Stereo. When switching a stereo channel into two mono channels the pan-pots are set fully left and right. This option will set them to center instead. - Disable double click fader action. Prevents unintentional gain settings, for example when using sensitive touchpads. #### **Dynamic Meters** - Compressor/Expander. Activates the display of the Compressor/Expander's gain reduction as thin blue line in the level meters of the corresponding channel. - Include Gain setting. The currently set fixed amplification value (by the Gain knob) is included in the display. This can lead to positive values, with the display limited to +6 dB. In case the option Compressor/Expander is deactivated this option is also not available, therefore grayed out. - Auto Level. Activates the display of the variable amplification of the Auto Leveler. As Auto Level can be configured to both amplify and attenuate the audio signal, the display can show negative (gain reduction) as well as positive (above 0 dB, amplification) values. #### **Snapshots** ▶ Do not load Main volume/balance. The values stored in the Snapshot are not loaded for the Main Out, so the current setting is not changed. # **Device Handling** - Always init DSP devices with TotalMix FX settings. Used to suppress the mismatch message after using the unit stand-alone. Settings in the unit are lost. - > Count MADI Channels per port. Not available with the Fireface UCX. - Disable ASIO Direct Monitoring. Disables ASIO Direct Monitoring (ADM) for the Fireface UCX within TotalMix FX. ## **Graphics** ➤ **Use D2D (Change requires restart).** Default on. Can be deactivated to use a compatible but CPU-taxing graphics mode, in case graphics problems show up. ## Store Setting for (Windows only) > All Users (Restart required). See next chapter. # **Special Options** ➤ **Lock User Interface.** Default off. Can be activated to freeze the current mix state. Faders, buttons and knobs relating to the mix state can not be moved anymore. # 25.7.1 Store for Current or All Users (Windows) TotalMix FX stores all settings, workspaces and snapshots for the *current user* in: XP: C:\Documents and Settings\ Username\Local Settings\ Application Data\TotalMixFX Vista/7/8: C.\Users\Username\AppData\Local\TotalMixFX Current User ensures that when workstations are used by several people they all find their own settings. In case the settings should be identical or given for any user, TotalMix FX can be changed to use the All User directory. An admin could even write protect the file lastFire-faceUCX1.xml, which results in a complete reset to that file's content whenever TotalMix FX is restarted. The xml-file is updated on exit, so simply set up TotalMix as desired and exit it (right mouse click on the symbol in the notification area). # 25.8 Settings The dialog Settings can be opened via the *Options* menu or directly via F3. # 25.8.1 Mixer Page On the mixer page some typical settings for the mixer operation are set, like Talkback source, Dim amount when Talkback is active, the stored main volume or the input used for the External Input function. #### **Talkback** - Input. Selects the input channel of the Talkback signal (microphone in control room). Default: None. - **Dim.** Amount of attenuation of the signals routed to the *Phones* in dB. #### Listenback - ➤ Input. Selects the input channel of the Listenback signal (microphone in recording room). Default: None. - **Dim.** Amount of attenuation of the signals routed to the *Main Out* in dB. # **Main Out** - Recall. User defined listening volume, activated by the Recall button at the unit or in TotalMix. - Dim. Amount of attenuation for the Main Out in dB. - External Input. Selects the stereo input that replaces the mix signal on the Main Out when activated. The volume of the stereo signal is adjusted by the slider Gain. # **PFL Mode** ▶ Live Mode, PFL replaces Solo. PFL means Pre Fader Listening. This feature is very useful when operating TotalMix in a live environment, as it allows to quickly listen/monitor any of the inputs by hitting the Solo button. The monitoring happens on the output set for the Cue signal via the Assign dialog. ## 25.8.2 MIDI Page The MIDI page has four independent settings for up to four MIDI remote controls, using CC commands or the Mackie Control protocol. #### Index Select one of four settings pages and thus remote controls. Settings are remembered automatically. To activate or deactivate any of the four remote controls check or uncheck 'In Use'. #### **MIDI Remote Control** - MIDI In. Input where TotalMix receives MIDI Remote data. - MIDI Out. Output where TotalMix sends MIDI Remote data. - Disable MIDI in background. Deactivates MIDI Remote Control as soon as another application is in the focus, or when TotalMix has been minimized. ### **Mackie Control Options** - ➤ Enable Protocol Support. When disabled TM FX will only react on the Control Change commands of chapter 28.5. - Map Stereo to 2 Mono Channels. One fader controls one (mono) channel. Should be disabled when stereo channels are used. - > Submix Selection in Input/Playback Row. Enables a selection of the submix when in first row, without having to change to the third row first. However, when using both mono and stereo channels first and third row usually do not match anymore, so the selection often becomes unclear this way. - **Enable full LCD support.** Activates full Mackie Control LCD support with eight channel names and eight volume/pan values. - > Send User defined Names. Channel names defined by the user will be sent to the remote device via MIDI and if supported shown in its display. - > **Send Level Messages.** Activates the transmission of the level meter data. *Peak Hold* activates the peak hold function as set up for the TotalMix level meters in the preferences. Note: When MIDI Out is set to NONE then TotalMix FX can still be controlled by Mackie Control MIDI commands, but the 8-channel block is not marked as remote target. ## 25.8.3 OSC Page The OSC page has four independent settings for up to four MIDI remote controls via Open Sound Control (OSC). This is a network based remote protocol that can be used for example by Apple's iPad with the app *TouchOSC* or *Lemur* to wirelessly remote control TotalMix FX running on a Mac or Windows computer. #### Index Select one of four settings pages and thus remote controls. Settings are remembered automatically. To activate or deactivate any of the four remote controls check or uncheck 'In Use'. #### **TotalMix FX OSC Service** - ▶ IP. Shows the network address of the computer running TotalMix FX (local host). This address must be entered on the remote side. - **Host Name.** Local computer name. - ➤ **Port incoming.** Must match the remote entry 'Port outgoing'. Typical values are 7001 or 8000. - ➤ **Port outgoing.** Must match the remote entry 'Port incoming'. Typical values are 9001 or 9000. #### **Remote Control** ➤ IP or Host name. Enter the IP or host name of the remote control. Please note that the IP number usually works better than the host name. #### **Options** Send Peak Level. Activates the transmission of the peak level meter data. Peak Hold activates the peak hold function as set up for the TotalMix level meters in the preferences. #### 25.8.4 Aux Devices The RME OctaMic XTC is a highly flexible hi-quality 8-channel microphone, line and instrument preamp with integrated AD-conversion to ADAT, AES/EBU and MADI, plus 4 channels of DA-conversion for monitoring. It can be used as universal front-end for the Fireface UCX and other interfaces. To simplify operation the most important parameters of the XTC (gain, 48V, phase, mute, AutoSet) can be controlled directly from the TotalMix FX input channels. This special remote control uses MIDI of any format (DIN, USB, MIDI over MADI). TotalMix FX version 0.99 or higher will show the panel *Aux Devices* which has all the settings to activate remote functionality. #### **Device Settings** - Digital Channels. Select where the OctaMic XTC sends its 8 analog channels to. With the Fireface UCX this will be the 8 ADAT channels. - **Device.** At this time only the OctaMic XTC is supported and can be chosen. #### **MIDI Settings** - MIDI In. Set the currently used MIDI connection to OctaMic XTC. - > MIDI Out. Set the currently used MIDI connection to OctaMic XTC. - Device ID. Default 0. This setting relates to the current choice in Digital Channels. The screenshot to the right shows what happens as soon as the above settings have been confirmed with OK. The ADAT channels show new elements for phantom power, Inst/PAD, Gain and AutoSet. Control operates bidirectional, so changing the gain at the unit will be mirrored in the TotalMix channels. Changing the gain in TotalMix FX will set the gain in the unit, which is also shown on the unit's display. For the remote to work the XTC's currently used MIDI I/Os have to be set to *Control*. More details are found in the manual of the OctaMic XTC. ##
25.9 Hotkeys and Usage TotalMix FX has many hotkeys and mouse/hotkey combinations to speed up and simplify the usage. The **Shift** key enables a fine-tuning of the gain with all faders and in the Matrix. On all knobs it will speed up the setting. A click on a fader with held down Shift key adds the fader to the temporary fader group. A click in the **fader path** with held down **Ctrl** key will let the fader jump to 0 dB, at the next click to $-\infty$. Same function: Double click of the mouse. Clicking on one of the **Panorama** or **Gain** knobs with held down **Ctrl** key lets the knob jump to center position. Same function: Double click of the mouse. Clicking on the **Panorama** knob with held down **Shift** key lets the knob jump to fully left, with **Shift-Ctrl** to fully right. Clicking on one of the channel settings buttons (slim/normal, Settings, EQ, Dynamics) with held down **Ctrl** key lets all channels to the right change their state. For example all panels can be opened/closed simultaneously. A **double click** of the mouse on a knob or its numerical field opens the according *Input Value* dialog. The desired value can then be set by keyboard. Dragging the mouse from a parameter field increases (move up) or decreases (move down) the value in the field. **Ctrl-N** opens the dialog *Function Select* to open a new TotalMix window. **Ctrl-W** opens the dialog *File Open* of the operating system to load a TotalMix Workspace file. The key **W** starts the dialog *Workspace Quick Select* for a direct selection or storage of up to 30 Workspaces. The key **M** switches the active window to Mixer view. The key **X** switches the active window to Matrix view. **Ctrl-M** opens a new Mixer window, **Ctrl-X** opens a new Matrix window. Another Ctrl-M or Ctrl-X closes the new window again. **F1** opens the online help. The Level Meter setup dialog can be opened with **F2** (same as in DIGICheck). The dialog Preferences is opened with **F3**. Alt-F4 closes the current window. Alt and number 1 to 8 (not on the numeric keypad!) will load the corresponding Snapshot. The right mouse button selects a Hardware Output. At the same time a context menu is displayed having these options: **Clear Submix.** Deletes the whole submix of the currently selected output. All inputs and playbacks of this routing will be set to $-\infty$. **Copy Submix.** Copies the whole submix of the selected output into memory. All input and playback faders from that routing will be included. Paste Submix. Writes the previously copied submix to the currently selected output. ## 25.10 Menu Options **Deactivate Screensaver:** When active (checked) any activated Windows screensaver will be disabled temporarily. **Always on Top:** When active (checked) the TotalMix window will always be on top of the Windows desktop. <u>Note</u>: This function may result in problems with windows containing help text, as the TotalMix window will even be on top of those windows, so the help text isn't readable. **Enable MIDI / OSC Control:** Activates external MIDI control of the TotalMix mixer. In Mackie Protocol mode the channels which are currently under MIDI control are indicated by a colour change of the name field. This setting also controls the MIDI remote function in stand-alone operation. The current state is kept when changing from online to offline. Additionally the current state is stored in the six Setups, the unit's own memory. **Submix linked to MIDI / OSC control (1-4).** The 8-channel group follows the currently selected submix, means Hardware Output, when a different submix is chosen on the remote as well as when doing this in TotalMix. The function can be activated separately for any of the 4/4 possible remotes. When using multiple windows it can be useful to deactivate this feature for specific windows. The view will not change then. **Preferences:** Opens a dialog box to configure several functions of the level meters and the mixer. See chapter 25.7. **Settings.** Opens a dialog box to configure several functions like Talkback, Listenback, Main Out and the MIDI Remote Control. See chapter 25.8. Channel Layout. Hide channels visually and exclude them from remote. See chapter 25.5.3. **Key Commands.** Opens a dialog box to configure the programmable buttons of the Standard and Advanced Remote, and of the computer's keyboard keys F4 to F8. Reset Mix. Offers several options to reset the mixer state: - > Straight playback with all to Main Out. All Playback channels are routed 1:1 to the Hardware Outputs. Simultaneously all playbacks are mixed down to the Main Out. The faders in the third row are not changed. - > Straight Playback. All Playback channels are routed 1:1 to the Hardware outputs. The faders in the third row are not changed. - > Clear all submixes. Deletes all submixes. - Clear channel effects. Switches off all EQs, Low Cuts, Reverb, Echo, Dynamics and Stereo Width and sets their knobs to default position. - Reset output volumes. All faders of the third row will be set to 0 dB, Main and Speaker B to -10 dB. - Reset channel names. Removes all names assigned by the user. - Total Reset. Playback routing 1:1 with mixdown to Main Out. Switches off all other functions. **Store current state into device.** The unit can store up to 6 setups (the current state) in its own memory. This function is especially useful when working in stand-alone mode. **Enable Stand-Alone MIDI.** Not connected to a computer the Fireface UCX can still be controlled directly by MIDI. See chapter 28.6. ## 26. The Matrix ## 26.1 Overview The mixer window of TotalMix looks and operates similar to mixing desks, as it is based on a conventional stereo design. The matrix display presents a different method of assigning and routing channels, based on a single channel or monaural design. The matrix view of the Fireface UCX has the look and works like a conventional patchbay, adding functionality way beyond comparable hardware and software solutions. While most patchbays will allow you to connect inputs to outputs with just the original level (1:1, or 0 dB, as known from mechanical patchbays), TotalMix allows you to use a freely definable gain value per crosspoint. Matrix and TotalMix are different ways of displaying the same processes. Because of this both views are always fully synchronized. Each change in one view is immediately reflected in the other view as well. ## 26.2 Elements of the Matrix View The visual design of the TotalMix Matrix is mainly determined by the architecture of the Fireface UCX system: - > Horizontal labels. All hardware outputs - Vertical labels. All hardware inputs. Below are all playback channels. - > Green 0.0 dB field. Standard 1:1 routing - Dark grey field with number. Shows the current gain value as dB - Blue field. This routing is muted - > Red field. Phase 180° (inverted) - > Dark grey field. No routing. To maintain overview when the window size has been reduced, the labels are floating. They won't leave the visible area when scrolling. ## 26.3 Operation Using the Matrix is a breeze. It is very easy to indentify the current crosspoint, because the outer labels light up in orange according to the mouse position. ➤ If input 1 is to be routed to output 1, use the mouse and click one time on crosspoint In 1 / AN 1 with held down Ctrl key. Two green 0.0 dB field pop in, another click removes them. - ➤ To change the gain (equals the use of a different fader position, see simultaneous display of the mixer view), drag the mouse up or down, starting from the gain field. The value within the field changes accordingly. The corresponding fader in the mixer view is moving simultaneously, in case the currently modified routing is visible. - ➤ On the right side is the Control Strip from the mixer window, adapted to the Matrix. The button for the temporary fader group is missing as well as all View options, as they don't make sense here. Instead the button *Mono Mode* lets you decide whether all the actions performed in the Matrix are valid for two channels or just one. The Matrix not always replaces the mixer view, but it significantly enhances the routing capabilities and - more important - is a brilliant way to get a fast overview of all active routings. It shows you in a glance what's going on. And since the Matrix operates monaural, it is very easy to set up specific routings with specific gains. ## 27. Tips and Tricks ## 27.1 ASIO Direct Monitoring (Windows) Programs that support ADM (ASIO Direct Monitoring - Samplitude, Sequoia, Cubase, Nuendo etc.) send control commands to TotalMix. This is directly shown by TotalMix. When a fader is moved in the ASIO host the corresponding fader in TotalMix will move too. TotalMix reflects all ADM gain and pan changes in real-time. But: the faders only move when the currently activated routing (the selected submix) corresponds to the routing in the ASIO host. The Matrix on the other hand will show any change, as it shows all possible routings in one view. ## 27.2 Copy a Submix TotalMix allows you to copy complete submixes to other outputs. In case a complex submix is need with only a few changes on a different output, the whole submix can be copied to that output. Right click with the mouse on the original submix output, means Hardware Output. In the context menu select Copy Submix. Then right click on the new submix output, choose Paste Submix in the context menu. Now fine tune the submix. #### 27.3 Delete a Submix The easiest and quickest way to delete complex routings is by selection of the according output channel in the mixer view by a right mouse click, and selection of the menu entry *Clear Submix*. As TotalMix FX includes an unlimited undo the delete process can be undone without any problem. ## 27.4 Doubling the Output Signal If a mix should be sent out via two different hardware outputs, the most elegant way is to use a permanently activated *Cue*. Set up the mixdown on the routing to the Main Out, use
Copy Submix to copy the final mix to the other output, then activate Cue on this other output. The output signal, and with this the complete mixdown, will then be played back from two stereo outputs simultaneously – the Main Out and the other Hardware Output. Even better: the faders of both outputs are still active, so the signal level can be adjusted individually. ## 27.5 Recording a Submix - Loopback TotalMix includes an internal loopback function, from the Hardware Outputs to the recording software. Instead of the signal at the hardware input, the signal at the hardware output is sent to the record software. This way, submixes can be recorded without an external loopback cable. Also the playback from a software can be recorded by another software. The function is activated by the **Loopback** button in the Settings panel of the Hardware Outputs. In loopback mode, the signal at the hardware input of the corresponding channel is no longer sent to the recording software, but still passed through to TotalMix. Therefore TotalMix can be used to route this input signal to any hardware output. Using the subgroup recording, the input can still be recorded on a different channel. As each of the 9 stereo hardware outputs can be routed to the record software, and none of these hardware inputs get lost, TotalMix offers an overall flexibility and performance not rivalled by any other solution. The risk of feedbacks, a basic problem of loopback methods, is low, because the feedback can not happen within the mixer, only when the audio software is switched into monitoring mode. The block diagram shows how the software's input signal is played back, and fed back from the Hardware Output to the software input. The block diagram also shows why with activated Loopback the EQ of the Hardware Output is now within the record path. With Loopback active the EQ of the input is not in the record path, only in the monitoring path, even when the Option DSP - EQ + D for Record is activated. ## Recording a Software's playback In real world application, recording a software's output with another software will show the following problem: The record software tries to open the same playback channel as the playback software (already active), or the playback one has already opened the input channel which should be used by the record software. This problem can easily be solved. First make sure that all rules for proper multi-client operation are met (not using the same record/playback channels in both programs). Then route the playback signal via TotalMix to a hardware output in the range of the record software, and activate Loopback for recording. ## Mixing several input signals into one record channel In some cases it is useful to record several sources into only one track. For example when using two microphones recording instruments and loudspeakers, TotalMix' Loopback mode saves an external mixing desk. Simply route/mix the input signals to the same output (third row), then redefine this output into a record channel via Loopback. This way any number of input channels from different sources can be recorded into one single track. ## 27.6 MS Processing The mid/side principle is a special positioning technique for microphones, which results in a mid signal on one channel and a side signal on the other channel. These information can be transformed back into a stereo signal quite easily. The process sends the monaural mid channel to left and right, the side channel too, but phase inverted (180°) to the right channel. For a better understanding: the mid channel represents the function L+R, while the side channel represents L-R. During record the monitoring needs to be done in 'conventional' stereo. Therefore TotalMix also offers the functionality of a M/S-decoder. Activation is done in the Settings panel of the Hardware Input and Software Playback channels via the **MS Proc** button. The M/S-Processing automatically operates as M/S encoder or decoder, depending on the source signal format. When processing a usual stereo signal, all monaural information will be shifted into the left channel, all stereo information into the right channel. Thus the stereo signal is M/S encoded. This yields some interesting insights into the mono/stereo contents of modern music productions. Additionally some very interesting methods of manipulating the stereo base and generating stereo effects come up, as it is then very easy to process the side channel with Low Cut, Expander, Compressor or Delay. The most basic application is the manipulation of the stereo width: a change of the level of the side channel allows to manipulate the stereo width from mono to stereo up to extended. #### 28. MIDI Remote Control #### 28.1 Overview TotalMix can be remote controlled via MIDI. It is compatible to the widely spread Mackie Control protocol, so TotalMix can be controlled with all hardware controllers supporting this standard. Examples are the Mackie Control, Tascam US-2400 or Behringer BCF 2000. Additionally, the stereo output faders (lowest row) which are set up as *Main Out* in the Control Room section can also be controlled by the standard **Control Change Volume** via **MIDI channel 1**. With this, the main volume of the Fireface is controllable from nearly any MIDI equipped hardware device. MIDI remote control always operates in View *Submix* mode, even when the View Option *Free* is currently selected in TotalMix FX. ## 28.2 Mapping TotalMix supports the following Mackie Control surface elements*: ## Element: Meaning in TotalMix: Channel faders 1 – 8 volume Master fader Main Out channel fader SEL(1-8) + DYNAMICS Activate Trim mode V-Pots 1 – 8 p ARROW DOWN or Assignable 2/PAGE- pressing V-Pot knobs pan = center CHANNEL LEFT or REWIND CHANNEL RIGHT or FAST FORWARD BANK LEFT or ARROW LEFT BANK RIGHT or ARROW RIGHT ARROW UP or Assignable1/PAGE+ move one channel left move one channel left move eight channels left move eight channels right move one row up EQ Master Mute PLUGINS/INSERT Master Solo STOP Dim Main Out PLAY Talkback PLAY Talkback PAN Mono Main Out FLIP Speaker B DYN TrimGains MUTE Ch. 1 – 8 Mute SOLO Ch. 1 – 8 Solo SELECT Ch. 1 – 8 Select REC Ch. 1 – 8 select output bus (Submix) RECORD Recall F1 - F8 load Snapshot 1 - 8 F9 select Main Out F10 - F12 select Cue Phones 1 - 3 *Tested with Behringer BCF2000 Firmware v1.07 in Mackie Control emulation for Steinberg mode and with Mackie Control under Mac OS X. move one row down ## **28.3 Setup** Open the Preferences dialog (menu Options or F3). Select the MIDI Input and MIDI Output port where your controller is connected to. When no feedback is needed select NONE as MIDI Output. Check Enable MIDI Control in the Options menu. ## 28.4 Operation The channels being under Mackie MIDI control are indicated by a colour change of the name field, black turns to brown. The 8-fader block can be moved horizontally and vertically, in steps of one or eight channels. Faders can be selected to gang them. In Submix View mode, the current routing destination (output bus) can be selected via REC Ch. 1-8. This equals the selection of a different output channel in the lowest row by a mouse click when in Submix View. In MIDI operation it is not necessary to jump to the lowest row to perform this selection. This way even the routing can be easily changed via MIDI. Full LC Display Support. This option in Preferences (F3) activates complete Mackie Control LCD support with eight channel names and eight volume/pan values. When Full LC Display Support is turned off, only a brief information about the first fader of the block (channel and row) is sent. This brief information is also available on the LED display of the Behringer BCF2000. Disable MIDI in Background (menu Options, Settings) disables the MIDI control as soon as another application is in the focus, or in case TotalMix has been minimized. This way the hardware controller will control the main DAW application only, except when TotalMix is in the foreground. Often the DAW application can be set to become inactive in background too, so that MIDI control is switched between TotalMix and the application automatically when switching between both applications. TotalMix also supports the 9th fader of the Mackie Control. This fader (labelled Master) will control the stereo output faders (lowest row) which are set up as *Main Out* in the Control Room section. #### 28.5 MIDI Control The hardware output which is set up as *Main Out* can be controlled by the standard **Control Change Volume** via **MIDI channel 1**. With this, the main volume of the Fireface is controllable from nearly any MIDI equipped hardware device. Even if you don't want to control all faders and pans, some buttons are highly desired to be available in 'hardware'. These are mainly the *Talkback* and the *Dim* button, and the monitoring option *Cue* (listen to Phones submixes). Fortunately a Mackie Control compatible controller is not required to control these buttons, as they are steered by simple Note On/Off commands on MIDI channel 1. The notes are (hex / decimal / keys): Dim: 5D / 93 / A 6 Mono: 2A / 42 / #F 2 Talkback: 5E / 94 / #A 6 Recall: 5F / 95 / H 6 Speaker B: 32 / 50 / D3 Cue Main Out: 3E / 62 / D 4 Cue Phones 1: 3F / 63 / #D 4 Cue Phones 2: 40 / 64 / E 4 Cue Phones 3: 41 / 65 / F 4 Cue Phones 4: 42 / 66 / #F 4 Snapshot 1: 36 / 54 / #F 3 Snapshot 2: 37 / 55 / G 3 Snapshot 3: 38 / 56 / #G 3 Snapshot 4: 39 / 57 / A 3 Snapshot 5: 3A / 58 / #A 3 Snapshot 6: 3B / 59 / B 3 Snapshot 7: 3C / 60 / C 4 Snapshot 8: 3D / 61 / #C 4 Trim Gains: 2D / 45 / A 2 Master Mute: 2C / 44 / #G 2 Master Solo: 2B / 43 / G 2 Note: Switching off Mackie Protocol support in *Settings / Mackie Control Options* will also disable the above simple MIDI note commands, as they are part of the Mackie protocol. Furthermore all faders of all three rows can be controlled via simple **Control Change** commands. The format for the Control Change commands is: Bx
yy zz x = MIDI channel yy = control number zz = value The first row in TotalMix is addressed by MIDI channels 1 up to 4, the middle row by channels 5 up to 8 and the bottom row by channels 9 up to 12. 16 Controller numbers are used: 102 up to 117 (= hex 66 to 75). With these 16 Controllers (= faders) and 4 MIDI channels each per row, up to 64 faders can be controlled per row (as required by the HDSPe MADI). Examples for sending MIDI strings: - Set input 1 to 0 dB: B0 66 68 - Set input 17 to maximum attenuation: B1 66 0 - Set playback 1 to maximum: B4 66 7F - Set Output 16 to 0 dB: B8 75 68 Note: Sending MIDI strings requires to use programmer's logic for the MIDI channel, starting with 0 for channel 1 and ending with 15 for channel 16. #### Further functions: - Trim Gains On: BC 66 xx (BC = MIDI channel 13, xx = any value) - Trim Gains Off: BC 66 xx or select a submix Select submix (fader) in third row: - channel 1/2: BC 68/69 xx - channel 3/4: BC 6A/6B xx etc. **Input Gain control** is available via CC9, value range as the gain itself (up to 65). The MIDI channel determines the controlled channel, from 1 to 16 (UCX: only 1/2). For this to work, *Enable MIDI Control* in the Options menu has to be activated. The **Reverb** and **Echo User Presets** can be changed via MIDI CC: B2 0C nn for Reverb preset 1 to 16, B3 0C nn for Echo preset 1 to 16 #### 28.6 Stand-Alone MIDI Control When not connected to a computer, the Fireface UCX can be controlled directly via MIDI. Stand-alone MIDI is controlled in TotalMix FX, *Options / Enable MIDI Control*. The current state of this option is stored in the Setups and with the current state, and used when going offline. Note: When not needed the stand-alone MIDI operation should not be active, as the unit will react on MIDI notes after power-on, and will also send MIDI notes. Control is performed via both the **Mackie Control protocol** and some **standard** MIDI functions (see below). In stand-alone mode not all functions known from TotalMix are available, because some of them aren't hardware, but software routines. Functions like *Talkback*, *Mono*, *Solo*, *relative* ganging of the faders, *Monitor Main* and *Monitor Phones* are realized by complex software code, therefore not available in stand-alone MIDI control operation. Still many functions, and especially the most important functions to control the Fireface UCX, are implemented in hardware, thus available also in stand-alone mode: - All faders and pans of the first and third row - Mute of the input signal per channel - Ganging via 'Select' - Choice of the routing destination, i.e. the current submix - Sending of LED and display data to the MIDI controller The second row (software playback) is skipped. The Fireface UCX sends display data as brief information, enabling an easy navigation through lines and rows. Other data like PAN and miscellaneous status LEDs are supported as well. In stand-alone mode the unit always operates in **View Submix** mode. Only this way the routing destination can be changed, and several mixdowns/submixes can be set up quickly and easily. If the current TotalMix setup is transferred into the Fireface via 'Flash current mixer state', the currently selected submix output is also pre-configured in the hardware for stand-alone MIDI remote operation. #### **Mackie Control Protocol** The stand-alone operation supports the following Mackie Control surface elements*: ## Element: Meaning in Fireface: CHANNEL LEFT or REWIND CHANNEL RIGHT or FAST FORWARD BANK LEFT or ARROW LEFT BANK RIGHT or ARROW RIGHT ARROW UP or Assignable1/PAGE+ ARROW DOWN or Assignable2/PAGE move one channel left move one channel left move eight channels left move one row up move one row down STOP Dim Main Out $\begin{array}{lll} \text{EQ} & \text{Master Mute} \\ \text{MUTE Ch. 1} - 8 & \text{Mute} \\ \text{SELECT Ch. 1} - 8 & \text{Select} \end{array}$ REC Ch. 1 – 8 select output bus (current submix) F1 – F6 load Setup 1 - 6 Additionally the following functions are available via simple MIDI notes on MIDI channel 1: Dim: 5D / 93 / A 6 Setup 1: 36 / 54 / #F 3 Setup 2: 37 / 55 / G 3 Setup 3: 38 / 56 / #G 3 Setup 4: 39 / 57 / A 3 Setup 5: 3A / 58 / #A 3 Setup 6: 3B / 59 / B 3 Loading the Setups stored in the device enables a quick configuration change of the UCX. With this any possible operation state can be activated by the push of a button at any time. ^{*}Tested with Behringer BCF2000 Firmware v1.07 in Mackie Control emulation for Steinberg mode. ## 28.7 Loopback Detection The Mackie Control protocol requires feedback of the received commands, back to the hard-ware controller. So usually TotalMix will be set up with both a MIDI input and MIDI output. Unfortunately any small error in wiring and setup will cause a MIDI feedback loop here, which then completely blocks the computer (the CPU). To prevent the computer from freezing, TotalMix sends a special MIDI note every 0.5 seconds to its MIDI output. As soon as it detects this special note at the input, the MIDI functionality is disabled. After fixing the loopback, check *Enable MIDI Control* under Options to reactivate the TotalMix MIDI. ## 28.8 OSC (Open Sound Control) Besides simple MIDI notes, the Mackie Protocol and Control Change commands, TotalMix FX can also be controlled by the Open Sound Control, OSC. For details on setup and usage see chapter 25.8.3. An OSC implementation chart can be downloaded from the RME website: http://www.rme-audio.de/download/osc_table_totalmix.zip RME offers a free iPad template for the iOS app TouchOSC (by Hexler, available in the Apple App-Store): http://www.rme-audio.de/download/tosc_tm_ipad_template.zip The RME forum hosts further information, more templates (iPhone...) and lots of useful user feedback. # **User's Guide** # Fireface UCX **▶ Class Compliant Mode** #### 29. General The Fireface UCX operates in three different modes: **driver-based USB 2**, **stand-alone** mode, and **Class Compliant** mode. The latter describes a standard that is natively supported by operating systems like Windows, Mac OSX and Linux. No proprietary drivers are required, the device will be directly recognized when the CC firmware is loaded. The natively available features will be limited in comparison to those provided by the RME driver for the UCX. For example there will be no hardware settings, no (Total) Mix and no settings for the effects. On the iPad (iOS) the UCX can be fully controlled by the optional app *TotalMix FX for iPad*. The Class Compliant mode can be activated and deactivated by the button on the front panel at any time. Neither Windows nor Mac Class Compliant support is relevant, though, since there are dedicated and matured drivers for both OS X and Windows, which provide ALL the device's features at lowest latencies. The main reason for implementing Class Compliant mode was to allow **connecting the UCX to an Apple iPad**[®]! The UCX provides the iPad and iPhone with professional analog I/O connections. Superb microphone preamps with EQ, dynamics, even with the AutoSet feature, in addition to professional balanced line outputs, and a hi-power headphone output that also excels with high impedance headphones. Plus level and gain adjustments, SPDIF and ADAT I/O, reverb, echo, zero latency monitoring, digitally via USB, without any limitation in quality, at up to 96 kHz and 24 bit. And of course a Sysex-capable double MIDI I/O. All of this is both unique and the first of its kind world-wide. Note that since iOS 5 multichannel recording is supported, and since iOS 6 multichannel play-back as well. Currently apps like **djay**, **Auria** and **Cubasis** support more than one stereo output, others are expected to follow. ## 30. System requirements - UCX in Class Compliant mode (firmware CC 7 or up) - Any Apple iPad with at least iOS 5 - iPhone with iOS 7 or up - Apple iPad Camera Connection Kit or Lightning to USB adapter ## 31. Operation Activation of the Class Compliant mode: Connect the UCX to power and switch it on. Turn the encoder knob in Channel mode until SU appears in the display. Press the knob once to activate Level mode. Turn the knob until CC is shown in the display, then press and hold the encoder until the display shows on (pressing the knob again will make the display show oF, indicating CC mode is inactive). The unit will reboot, all LEDs will light up, after which it will be in Class Compliant mode. <u>Check if CC mode is active:</u> CC mode is active when turning the encoder lists not only CC, but also C8 and CA in the display. Connect the USB cable to the UCX and the Camera Connection Kit. Start iPhone/iPad and connect the Camera Connection Kit. If everything works as expected, the unit will enter CC Host mode, indicated by the HOST LED turning off. Audio playback in iTunes will automatically be performed by the UCX, using analog outputs 1/2 and the phones outputs 7/8 plus SPDIF/ADAT in parallel (mode C8). Apps that support MIDI and are ready for Core MIDI (available since iOS 4.2) will offer dialogs to select the desired UCX MIDI inputs and outputs. #### 31.1 Useful hints If the unit is not in CC mode, the iPhone/iPad will detect an incompatible USB device, and display a message saying "Cannot Use Device – The connected USB device is not supported". When using hard covers as back panel protection for the iPad, the Connection Kit's plug may not fit completely, causing a loose connection or partial functionality. If in doubt, remove the cover. No sound: Incorrect output gain settings, see chapter 34. The iPhone/iPad volume control is inactive during USB operation. If the unit does not enter Host mode: Remove and reconnect the Connection Kit. Correct detection and operation of the Connection Kit itself can be determined in Settings / General / About. The adapter will be listed there right after connection, with additional details like manufacturer, model number etc. Connected USB devices, i.e. the UCX will not be shown here,
though. Having tested several chinese replicas of the Apple Camera Connection Kit, from 2-in-1 to 5-in-1 adapters, we strongly recommend purchasing the original! All adapters seemed to work for the simple application of copying photos. Attempting to run the UCX with USB Audio 2.0 was when the problems started. Some of the tested adapters would not work at all, others only with short cables, and only one adapter came close to the quality of the original. But as soon as 8-channel recording or 96 kHz playback was initiated, the Apple Kit always performed much better. We also recommend the purchase of a dock-to-dock extension cable, to avoid having the CCK attached to the iPad directly with the heavy USB cable hanging down. This can cause the CCK to slip out of the iPad's connector, or to be in the way most of the time. An extension cable provides enormous freedom of movement. We are working with cable lengths of 50 cm and 1 m, both work flawlessly. These cables are available as *DeLock iPhone extension cable*, or *Dock Extender*, e.g. from Amazon. It is important to note that each individual component is responsible for stable operation of UCX and iPhone/iPad. As an example, a setup with an iPad connected to a 1 m DeLock cable, CCK, 5 m USB connection to the UFX only worked with the original Apple CCK. Not only for simple iTunes stereo playback, but also with 96 kHz playback and 8-channel recording. In this setup, the USB cable could even be replaced with a 10 m active one. With lower quality cables or CCK replicas, even 50 cm dock to dock to 1 m USB would be considered success... As far as we are aware active cable extensions for Lightning are not available. The existing passive extensions make no sense due to the doubled thickness of their cable (double the amount of wires inside), and the used Lightning connectors are no originals and therefore usually lack quality. The original adapter with its short cable is lightweight and works, can therefore be used easily with iPad and iPhone. ## 31.2 Class Compliant Mode under Windows and Mac OS X On a Windows PC, Class Compliant mode is indicated by a missing "RME" in the device name shown in the Device Manager. In the correct mode and with installed drivers, the full name including RME is shown, without serial number. Windows does not support USB Audio 2.0 directly. The UCX will be detected, but automatic driver installation will fail. This is important to remember. Connecting it to the PC one day after having it used with the iPhone/iPad one might forget that it is still in CC mode. You might end up with hours of wasted time trying to repair your driver installation – when all you need to do is set the unit back to normal mode. Mac OSX supports USB Audio 2.0, even with more than 2 channels. The UCX offers 18 input and 18 output channels at up to 96 kHz. It is shown as "Fireface UCX (xxxxxxxxx)" in the Audio MIDI Setup, in both normal and CC mode. In CC mode the USB Settings will vanish from the Dock, and TotalMix will – if at all – show a 'disconnected' UCX. The Audio window in the Audio MIDI Setup lists two available modes: 2 channels and 18 channels. The sample rate shown here as 'Default' is the one set at the UCX. Alsa (Linux) does not work with USB 2 Class Compliant interfaces at this time, but it seems it can be fixed (recompiled) to do so. More information is available here: http://www.mail-archive.com/alsa-user@lists.sourceforge.net/msg28901.html ## 32. Supported Inputs and Outputs In Mac OS X, either the first two or all channels will work, depending on the choice in the Audio MIDI Setup. In both cases the playback signal of channels 1/2 can be copied to outputs 7/8. When connected to an iPhone/iPad, the analog mic/line input 1 works with mono apps, inputs 1 and 2 with stereo apps (both dual mono and stereo), and up to 8 inputs with 8-channel applications like *MultiTrack DAW* and *Music Studio*. *Garage Band* supports all inputs, but only two at a time. *Auria* and *Cubasis* can record all 18 inputs simultaneously. Playback will use analog outputs 1 and 2, or even more channels if the app supports such operation. The UCX can optionally copy the iPhone/iPad playback channels 1/2 to outputs 7/8 and SPDIF/ADAT, for easier monitoring (mode C8). All outputs can be processed independently (volume, EQ, dynamics, FX return). Configuring the UCX is ideally done via the app *TotalMix FX for iPad*, otherwise by loading Setups. These are written into the unit while operated with PC/Mac via TotalMix FX, and also control clock mode master or AutoSync and the sample rate. The UCX (and with it the iPhone/iPad) will be synchronized to an external digital sample rate if there is a valid digital input signal. With a wrong sample rate heavy audio noise will occur. Without an SPDIF or ADAT input signal the UCX enters master mode and uses the sample rate set by Mac OS X or iOS (the app in use). While the MIDI I/Os will send and receive Sysex messages, not all apps are ready to do this. For example *MIDI Monitor* and *AC-7* do not support Sysex at this time. The app *Midi Tool Box* can be used to verify that the UFX is working correctly, and the problem lies somewhere else. ## 33. Front Panel Operation Output Gain ADAT 1/2 The front panel operation is identical to the one under Windows and OS X, or standalone operation. The rotary encoder controls these parameters: iPhone/iPadMac OS XInput Gain 1/2Input Gain 1 - 4Output Gain 1/2Output Gain 1 - 6Output Gain 7/8 (Phones)Output Gain 7/8 (Phones)Output Gain SPDIFOutput Gain SPDIF When used with the iPhone/iPad all channels can be accessed through the display of the UCX. The values of the channels not listed above can be changed, but will not cause any change during CC operation. Output Gain ADAT 1-8 After activation of the Class Compliant mode turning the knob lists not only *CC*, but also *C8* and *CA* in the display. <u>C8</u>: The iPhone/iPad playback channels 1/2 are copied to the phones output 7/8 and SPDIF/ADAT 1/2, channels 3 to 8 to ADAT outputs 3 to 8. Application example iTunes: Music playback with this 2-channel app happens only on the playback channels 1/2, therefore the headphone output could not be used. Thanks to the C8 option the iTunes signal is also available digitally via SPDIF/ADAT. <u>CA</u>: 1:1 routing of all 18 playback channels. Application example djay: independent usage of main output and phones/PFL. Mode C 8 would always provide both signals at the phones output. CA is a typical DAW mode. Both modes can be activated at any time and do not influence the mixer state loaded via the Setups, as they only influence the playback routing. ## 34. Audio Routing and Processing In Class Compliant mode, the UCX features operation very similar to normal operation with TotalMix FX, with two major differences: - ➤ There is no second TotalMix row (no software playback channels), hence no individual routing or mixing of playback channels. These will always be connected either straight to the physical outputs (CA), or have an additional signal copy from 1/2 to 7/8 and SPDIF/ADAT (C8), making the headphone output usable even in stereo mode. - > The input effects EQ/Dyn will always be active in the recording path Therefore the UCX is also a very powerful tool in CC mode, and can even be pre-configured via TotalMix FX under Windows/Mac. Apart from the current configuration, which will be preserved, the possibility of saving up to 6 configurations in the setup memory is very useful, allowing for a quick reconfiguration. The input signal will pass through all activated functions of the TM FX input channel, namely settings, EQ, and Dynamics, and is then sent to the iPhone/iPad. Like under Windows and Mac, the input fader controls direct monitoring to outputs 1/2 and 7/8. The FX send control for echo/reverb is also active. As in normal TotalMix FX use, the options Stereo Width, MS Proc and Phase L/R are NOT within the recording path, but in the monitor path. This is technically determined and can not be changed. The iPhone/iPad output signal passes through all activated functions of the TM FX hardware outputs, namely settings, EQ, and dynamics. The third row's fader sets the output level. Control Room Section settings are inactive. Configuring the Phones output is done by output channel 7/8. With the mirroring of signals to SPDIF and ADAT outputs in C8 mode, the UCX features two simultaneously usable digital outputs, with independent processing (volume, EQ, Dyn, FX Return), even when using standard 2-channel apps. ## 35. Setups TotalMix FX can transfer all current settings to the device (Options/Store Current State into Device). There are six memory slots (Setups) available. An example: - ➤ Inputs with no processing, gain set to +30 dB and phantom power active. Outputs without processing, faders for 1/2 set to 0 dB, 7/8 at 20 dB, clock mode master, saved in Setup 1. - ➤ Inputs with Compressor, Factory Preset Mix Limiter (digital overload protection), gain set to +30 dB, no phantom power, outputs 1/2 with EQ (factory preset Modern Bass Treble), outputs 7/8 with EQ (factory preset Cheap Phones Compensation), faders for 1/2 at 0 dB, 7/8 at -20dB, clock mode AutoSync, saved in Setup 2. In CC mode, the encoder in the SU - Level menu can switch between setups 1 and 2 at any time, alternating between entirely different configurations. Further examples would be activating reverb/echo, or temporary monitoring of the input signal. Very comfortable is the use of the Advanced Remote, as in CC mode its 6 upper buttons steer the Setups 1 to 6 directly On the iPad the optional app *TotalMix FX for iPad* gives full control of all functions and parameters in real-time and with full overview, similar to working under Windows and Mac. # **User's Guide** # Fireface UCX **Technical Reference** ## 36. Technical Specifications ## 36.1 Analog ## AD, Line In 5-8, rear - Resolution AD: 24 bit - Signal to Noise ratio (SNR): 111 dB RMS unweighted, 113 dBA -
Frequency response @ 44.1 kHz, -0.5 dB: 6 Hz 20.6 kHz - Frequency response @ 96 kHz, -0.5 dB: 6 Hz 45.3 kHz - Frequency response @ 192 kHz, -1 dB: 5 Hz 90 kHz - THD: < -105 dB, < 0.0005 % - THD+N: < -98 dB, < 0.0012 % - Channel separation: > 110 dB - Maximum input level: +19 dBu - Input: 6.3 mm TRS jack, electronically balanced - Input impedance: 10 kOhm - Input sensitivity switchable to Lo Gain, +4 dBu, -10 dBV - Input level for 0 dBFS @ Lo Gain: +19 dBu - Input level for 0 dBFS @ +4 dBu: +13 dBu - Input level for 0 dBFS @ -10 dBV: +2 dBV ## Line In 3-4, front - · as AD, but: - Additional Gain stage: 0 up to +12 dB - Maximum input level, Lo Gain, Gain 0 dB: Line +19 dBu, Inst +13 dBu - Maximum input level, -10 dBV, Gain 12 dB: Line -7.5 dBu, Inst -13.5 dBu - Input impedance Inst: 470 kOhm - Input Gain Inst: +6 dB - Input mode: Line balanced (TRS), Inst unbalanced (TS) - CLIP LED: 0 dBFS - SIG LED: -60 dBFS ## Microphone/Line 1-2, front - as AD Line In 5-8, but: - Input: Neutrik XLR/TRS Combo jack, electronically balanced - Input impedance: XLR 2 kOhm, TRS 8 kOhm balanced - Signal to Noise ratio (SNR): 112 dB RMS unweighted, 115 dBA - Low Roll Off –0.5 dB: 18 Hz, -1 dB: 12 Hz - Gain range: 0 dB, +10 up to +65 dB - Maximum input level XLR, Gain 0 dB: +10 dBu - Maximum input level XLR, Gain 65 dB: -55 dBu - Maximum input level TRS, Gain +0 dB: +21 dBu - Maximum input level TRS, Gain +65 dB: -44 dBu - CLIP LED: 0 dBFS - SIG LED: -60 dBFS #### DA, Line Out 1-6, rear - · Resolution: 24 bit - Dynamic range (DR): 111 dB, 113 dBA @ 44.1 kHz (unmuted) - Frequency response @ 44.1 kHz, -0.1 dB: 8 Hz 20.4 kHz - Frequency response @ 96 kHz, -0.5 dB: 6 Hz 45 kHz - Frequency response @ 192 kHz, -1 dB: 5 Hz 90 kHz - THD: -100 dB, < 0.001 % - THD+N: -96 dB, < 0.0015 % - Channel separation: > 110 dB - Maximum output level: +19 dBu - Output: 6.3 mm TRS jack, servo-balanced - Output impedance: 75 Ohm - Output level switchable Hi Gain, +4 dBu, -10 dBV - Output level at 0 dBFS @ Hi Gain: +19 dBu - Output level at 0 dBFS @ +4 dBu: +13 dBu - Output level at 0 dBFS @ -10 dBV: +2 dBV ## DA - Phones, 7/8, front - as DA, but: - · Output: 6.3 mm TRS jack, unbalanced - Output impedance: 30 Ohm #### **36.2 MIDI** - 2 x MIDI I/O via 5-pin DIN jacks - · Galvanically isolated by optocoupled input - Hi-speed mode: Jitter and response time typically below 1 ms - Separate 128 byte FIFOs for input and output ## 36.3 Digital - · Clocks: Internal, SPDIF In, ADAT In, word clock in - Low Jitter Design: < 1 ns in PLL mode, all inputs - Internal clock: 800 ps Jitter, Random Spread Spectrum - Jitter suppression of external clocks: > 30 dB (2.4 kHz) - Effective clock jitter influence on AD and DA conversion: near zero - PLL ensures zero dropout, even at more than 100 ns jitter - Digital Bitclock PLL for trouble-free varispeed ADAT operation - Supported sample rates: 28 kHz up to 200 kHz ## 36.4 Digital Inputs #### **Word Clock** - BNC, not terminated (10 kOhm) or internally terminated (75 Ohms) - Automatic Double/Quad Speed detection and internal conversion to Single Speed - SteadyClock guarantees super low jitter synchronization even in varispeed operation - Not affected by DC-offsets within the network - Signal Adaptation Circuit: signal refresh through auto-center and hysteresis - Overvoltage protection - Level range: 1.0 Vpp 5.6 Vpp - Lock Range: 27 kHz 200 kHz - Jitter when synced to input signal: < 1 ns - Jitter suppression: > 30 dB (2.4 kHz) ## **ADAT Optical** - 1 x TOSLINK - Standard: 8 channels 24 bit, up to 48 kHz - Double Speed (S/MUX): 4 channels 24 bit 96 kHz - Quad Speed (S/MUX4): 2 channels 24 bit 192 kHz - Bitclock PLL ensures perfect synchronisation even in varispeed operation - Lock Range: 31.5 kHz 50 kHz - Jitter when synced to input signal: < 1 ns - Jitter suppression: > 30 dB (2.4 kHz) #### **AES/EBU - SPDIF** - 1 x RCA and 1 x optical, according to IEC 60958 - High-sensitivity input stage (< 0.3 Vpp) - Accepts Consumer and Professional format, copy protection will be ignored - Lock Range: 27 kHz 200 kHz - Jitter when synced to input signal: < 1 ns - Jitter suppression: > 30 dB (2.4 kHz) ## 36.5 Digital Outputs ## **Word Clock** - BNC - Max. output voltage: 5 Vpp - Output voltage @ 75 Ohm termination: 4.0 Vpp - Output impedance: 10 Ohm - Frequency range: 27 kHz 200 kHz #### **ADAT** - 1 x TOSLINK - Standard: 8 channels 24 bit, up to 48 kHz - Double Speed (S/MUX): 4 channels 24 bit 96 kHz - Quad Speed (S/MUX4): 2 channels 24 bit 192 kHz #### **AES/EBU - SPDIF** - 1 x RCA and 1 x optical, according to IEC 60958 - Output level Professional 1.4 Vpp, Consumer 0.7 Vpp - Format Professional according to AES3-1992 Amendment 4 - Format Consumer (SPDIF) according to IEC 60958 - Single Wire mode, sample rate 28 kHz up to 200 kHz ## 36.6 General - Power supply: external power supply - Typical power consumption: 13 Watts - Current at 12 Volt operating voltage: 910 mA (11 Watts) - Dimensions including rack ears (WxHxD): 265 x 44 x 165 mm (10.5" x 1.73" x 6.5") - Dimensions without rack ears/handles (WxHxD): 218 x 44 x 155 mm (8.6" x 1.73" x 6.1") - Weight: 1.5 kg (3.3 lbs) - Temperature range: +5° up to +50° Celsius (41° F up to 122°F) - Relative humidity: < 75%, non condensing - Included power supply: Internal switching PSU, 100 240 V AC, 2 A, 24 Watts ## 37. Technical Background ## 37.1 Lock and SyncCheck Digital signals consist of a carrier and the data. If a digital signal is applied to an input, the receiver has to synchronize to the carrier clock in order to read the data correctly. To achieve this, the receiver uses a PLL (Phase Locked Loop). As soon as the receiver meets the exact frequency of the incoming signal, it is locked. This **Lock** state remains even with small changes of the frequency, because the PLL tracks the receiver's frequency. If an ADAT or SPDIF signal is applied to the Fireface UCX, the corresponding input LED starts flashing. The unit indicates LOCK, i. e. a valid input signal (in case the signal is also in sync, the LED is constantly lit, see below). Unfortunately, LOCK does not necessarily mean that the received signal is correct with respect to the clock which processes the read out of the embedded data. Example [1]: The Fireface is set to 44.1 kHz internally (clock mode Master), and a mixing desk with ADAT output is connected to input ADAT. The corresponding LED will show LOCK immediately, but usually the mixing desk's sample rate is generated internally (also Master), and thus slightly higher or lower than the Fireface's internal sample rate. Result: When reading out the data, there will frequently be read errors that cause clicks and drop outs. Also when using multiple inputs, a simple LOCK is not sufficient. The above described problem can be solved elegantly by setting the Fireface from Master to AutoSync (its internal clock will then be the clock delivered by the mixing desk). But in case another, un-synchronous device is connected, there will again be a slight difference in the sample rate, and therefore clicks and drop outs. In order to display those problems optically at the device, the Fireface includes **SyncCheck**. It checks all clocks used for *synchronicity*. If they are not synchronous to each other (i. e. absolutely identical), the SYNC LED of the asynchronous input flashes. In case they are completely synchronous, all LEDs are constantly lit. In example 1 it would have been obvious that the LED ADAT kept on flashing after connecting the mixing desk. In practice, SyncCheck allows for a quick overview of the correct configuration of all digital devices. So one of the most difficult and error-prone topics of the digital studio world finally becomes easy to handle. The same information is presented in the Fireface's Settings dialog. In the status display *Sync-Check* the state of all clocks is decoded and shown as simple text (No Lock, Lock, Sync). ## 37.2 Latency and Monitoring The term **Zero Latency Monitoring** has been introduced by RME in 1998 for the DIGI96 series of audio cards. It stands for the ability to pass-through the computer's input signal at the interface directly to the output. Since then, the idea behind has become one of the most important features of modern hard disk recording. In the year 2000, RME published two ground-breaking Tech Infos on the topics *Low Latency Background*, which are still up-to-date: *Monitoring, ZLM and ASIO*, and *Buffer and Latency Jitter*, both found on the RME website. #### How much Zero is Zero? From a technical view there is no zero. Even the analog pass-through is subject to phase errors, equalling a delay between input and output. However, delays below certain values can subjectively be claimed to be a zero-latency. This applies to analog routing and mixing, and in our opinion also to RME's Zero Latency Monitoring. The term describes the digital path of the audio data from the input of the interface to its output. The digital receiver of the Fireface UCX can't operate un-buffered, and together with TotalMix and the output via the transmitter, it causes a typical delay of 3 samples. At 44.1 kHz this equals about 68 μ s (0.000068 s), at 192 kHz only 15 μ s. The delay is valid for ADAT and SPDIF in the same way. #### Oversampling While the delays of digital interfaces can be disregarded altogether, the analog inputs and outputs do cause a significant delay. Modern converter chips operate with 64 or 128 times oversampling plus digital filtering, in order to move the error-prone analog filters away from the audible frequency range as far as possible. This typically generates a delay of one millisecond. A playback and re-record of the same signal via DA and AD (loopback) then causes an offset of the newly recorded track of about 2 ms. ## Low Latency! The Fireface UCX uses the latest AD converters having an innovative digital filter with a delay of only 14 samples in Single and Double Speed, and 11 samples in Quad Speed. The DA
converter even exceeds these astonishing values with only 7 samples delay in all modes. The AD/DA delays of the Fireface UCX are: | Sample frequency kHz | 44.1 | 48 | 88.2 | 96 | 176.4 | 192 | |----------------------|------|-------|------|-------|-------|-------| | AD (14 x 1/fs) ms | 0.32 | 0.29 | 0.16 | 0.146 | | | | AD (11 x 1/fs) ms | | | | | 0.06 | 0.05 | | DA (7 x 1/fs) ms | 0.16 | 0.146 | 0.08 | 0.07 | 0.04 | 0.036 | Note that the total roundtrip delay of the unit from A to A will be a few samples higher. TotalMix FX causes an additional delay of typically 3 samples as it stays always within the audio path. #### **Buffer Size (Latency)** *Windows:* This option found in the Settings dialog defines the size of the buffers for the audio data used in ASIO and WDM (see chapter 7). *Mac OS X:* The buffer size is defined within the application. Only some do not offer any setting. For example iTunes is fixed to 512 samples. General: A setting of 64 samples at 44.1 kHz causes a latency of 1.5 ms, for record and play-back each. But when performing a digital loopback test no latency/offset can be detected. The reason is that the software naturally knows the size of the buffers, therefore is able to position the newly recorded data at a place equalling a latency-free system. AD/DA Offset under ASIO and OS X: ASIO (Windows) and Core Audio (Mac OS X) allow for the signalling of an offset value to correct buffer independent delays, like AD- and DA-conversion, or the Safety Buffer described below. An analog loopback test will then show no offset, because the application shifts the recorded data accordingly. Because in real world operation analog record and playback is unavoidable, the drivers include an offset value matching the Fireface's converter delays. Therefore, in a **digital** loopback test a *negative* offset of about 3 ms occurs. This is no real problem, because this way of working is more than seldom, and usually the offset can be compensated manually within the application. Additionally, keep in mind that even when using the digital I/Os usually at some place an AD- and DA-conversion is involved (no sound without...). <u>Note</u>: Cubase and Nuendo display the latency values signalled from the driver separately for record and playback. The values do not exactly equal the buffer size (for example 3 ms at 128 samples), instead a higher value is shown, including the time needed for the AD/DA-conversion. Playback shows an even higher value – see Safety Buffer. #### Safety Buffer An additional small safety buffer on the playback side has proven to be very efficient and useful. It is therefore implemented in all RME interfaces. Under Windows the Fireface UCX uses a fixed additional buffer of 32 samples with USB and 64 samples with FireWire, under Mac 32 samples, which is added to the current buffer size. The main advantage is the ability to use lowest latency at highest CPU loads. Furthermore, the fixed buffer does not add to the latency jitter (see Tech Info), the subjective timing is extraordinary. #### Core Audio's Safety Offset Under OS X, every audio interface has to use a so called *Safety Offset* on record and playback, otherwise Core Audio won't operate click-free. The Fireface uses a Safety Offset of 16 samples with USB and 32 samples with FireWire. This offset is signalled to the system, and the software can calculate and display the total latency of buffer size plus AD/DA offset plus 2 x Safety Offset plus Safety Buffer for the current sample rate. ## 37.3 USB Audio USB audio is different from PCI based audio interfaces in several ways. A Fireface can achieve a performance similar to a PCI or PCI Express card when used with an optimal PC. Low CPU load and click-free operation even at 48 samples buffer size are indeed possible on current computers. However, using older computers a simple stereo playback will begin to cause a CPU load of more than 30%. A computer blocked for a short time – no matter if ASIO or WDM – will lose one or more data packets. Such problems can only be solved by increasing the buffer size (and with this the latency). The Fireface features a unique data checking, detecting errors during transmission via USB and displaying them in the Settings dialog. Additionally the Fireface provides a special mechanism to continue recording and playback in case of drop-outs, and to correct the sample position in real-time. Like any audio interface the Fireface should have a data transmission to the computer as undisturbed as possible. The easiest way to guarantee this is to connect it to its own bus, which should be no big problem as most USB 2.0 interfaces are a double bus design. A check in the Device Manager can be done as follows: - Connect the Fireface to a USB port - > Start the Device Manager, View set to Devices by Connection - > Select ACPI x86-based PC, Microsoft ACPI-Compliant System, expand PCI Bus This branch normally includes two entries of a *USB2 Enhanced Host Controller*. A USB Root Hub can be seen, which then connects all USB devices, including the Fireface. By reconnecting to a different port this view immediately shows at which of the two controllers the Fireface is connected. With multiple devices it can also be checked if they are connected to the same controller. Furthermore this information can be used to operate an external USB drive without disturbing the Fireface, by simply connecting the drive to the other controller. Especially with notebooks it can happen that all internal devices and all the sockets/ports are connected to the same controller, with the second controller not used at all. In that case all devices have to use the same bus and interfere with each other. #### 37.4 FireWire Audio FireWire audio is different from PCI audio interfaces in several ways. RME's PCI data transmission happens per channel, while FireWire is working interleaved. A direct communication with the application (Zero CPU load) is not possible with FireWire, because communication has to be established by the operating system's FireWire driver. Compared to PCI cards, the FireWire subsystem creates an additional CPU load at lower latencies. Due to insufficient buffering within FireWire controllers, single peak loads on the PCI bus can already cause loss of one or more data packets. This is independent of the manufacturer and no RME problem. FireWire Audio does not reach the same performance as PCI audio. On a standard computer with modern single PCI bus, about 100 audio channels can be transmitted per direction (record/playback). Exceeding this limit, any system activity - even outside the PCI bus - causes drop outs. The Fireface UCX features a unique data checking, detecting errors during transmission via PCI/FireWire and displaying them in the Settings dialog. Additionally the Fireface provides a special mechanism which allows to continue record and playback in spite of drop-outs, and to correct the sample position in real-time. Detailed information on this topic can be found in the Tech Info *FireWire Audio by RME – Technical Background* on the RME website: http://www.rme-audio.com/english/techinfo/fwaudio_rme.htm Transferring these experiences to FireWire and the Fireface UCX means that besides the number of channels the *bus load* has to be taken into account too. One channel at 96 kHz causes the same load to the system as two channels at 48 kHz, the bus load is doubled at 96 kHz and quadrupled at 192 kHz. *Limit Bandwidth* sets a constant number of channels, but those channels cause a bigger load in DS and QS mode, because more data have to be transferred. For example the 12 channels at 192 kHz equal a FireWire and PCI bus load of 48 channels at 48 kHz: | Limit Bandwidth | 48 kHz (max 18) | DS (max. 14) | QS (max. 12) | |-----------------|------------------------|---------------------|---------------------| | All Channels | 18 | 28 | 48 | | An+SP+ADAT 1-4 | 14 | 28 | 48 | | Analog+SPDIF | 10 | 20 | 40 | | Analog | 8 | 16 | 32 | To use FireWire as efficiently as possible, the Fireface allows to reduce the number of transferred channels. *Limit Bandwidth* provides four options, limiting the transmission internally to 18, 14, 10 or 8 channels. This limitation is independent from the sample rate. As can be seen in the following table, in 192 kHz mode there is no difference between the setting *All Channels* and *An+SP+ADAT 1-4*, as the Fireface UCX offers only 12 channels in Quad Speed mode anyway. | Limit Bandwidth | 48 kHz (18) | 96 kHz (14) | 192 kHz (12) | FireWire
Channels | |-----------------|-------------|-------------|--------------|----------------------| | All Channels | Х | Х | 1 | 18 | | An+SP+ADAT 1-4 | Х | Х | 1 | 14 | | Analog+SPDIF | Х | Х | Х | 10 | | Analog | Х | Х | Х | 8 | ## 37.5 DS - Double Speed When activating the *Double Speed* mode the Fireface UCX operates at double sample rate. The internal clock 44.1 kHz turns to 88.2 kHz, 48 kHz to 96 kHz. The internal resolution is still 24 bit. Sample rates above 48 kHz were not always taken for granted, and are still not widely used because of the CD format (44.1 kHz) dominating everything. Before 1998 there were no receiver/transmitter circuits available that could receive or transmit more than 48 kHz. Therefore a work-around was used: instead of two channels, one AES line only carries one channel, whose odd and even samples are being distributed to the former left and right channels. By this, you get the double amount of data, i. e. also double sample rate. Of course in order to transmit a stereo signal two AES/EBU ports are necessary then. This transmission mode is called *Double Wire* in the professional studio world, and is also known as *S/MUX* (*Sample Multiplexing*) in connection with the ADAT format. Because the ADAT interface does not allow for sampling frequencies above 48 kHz (a limitation of the interface hardware), the Fireface UCX automatically uses *Sample Multiplexing* in DS mode.
One channel's data is distributed to two channels according to the following table: | Analog In | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |-----------|------|------|------|------|---|---|---|---| | DS Signal | 1/2 | 3/4 | 5/6 | 7/8 | - | - | - | | | Port | ADAT | ADAT | ADAT | ADAT | | | | | As the transmission of double rate signals is done at standard sample rate (Single Speed), the ADAT outputs still deliver 44.1 kHz or 48 kHz. ## 37.6 QS - Quad Speed Due to the small number of available devices that use sample rates up to 192 kHz, but even more due to a missing real world application (CD...), Quad Speed has had no broad success so far. An implementation of the ADAT format as double S/MUX results in only two channels per optical output. In Quad Speed mode the Fireface UCX automatically uses *Sample Multiplexing*. One channel's data is distributed to four channels according to the following table: | Analog In | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |-----------|---------|---------|---|---|---|---|---|---| | QS Signal | 1/2/3/4 | 5/6/7/8 | - | - | - | - | - | - | | Port | ADAT | ADAT | | | | | | | As the transmission of quad rate signals is done at standard sample rate (Single Speed), the ADAT output still delivers 44.1 kHz or 48 kHz. #### 37.7 Noise level in DS / QS Mode The outstanding signal to noise ratio of the Fireface UCX AD-converters can be verified even without expensive test equipment, by using record level meters of various software. But when activating the DS and QS mode, the displayed noise level will rise from -111 dB to -107 dB at 96 kHz, and –93 dB at 192 kHz. This is not a failure. The software measures the noise of the whole frequency range, at 96 kHz from 0 Hz to 48 kHz (RMS unweighted), at 192 kHz from 0 Hz to 96 kHz. When limiting the measurement range from 20 Hz to 20 kHz (so called audio bandpass) the value would be -111 dB again. This can be verified with RME's *DIGICheck*. The function **Bit Statistic & Noise** measures the noise floor by *Limited Bandwidth*, ignoring DC and ultrasound. The reason for this behaviour is the noise shaping technology of the analog to digital converters. They move all noise and distortion to the in-audible higher frequency range, above 24 kHz. That's how they achieve their outstanding performance and sonic clarity. Therefore the noise is slightly increased in the ultrasound area. High-frequent noise has a high energy. Add the doubled (quadrupled) bandwidth, and a wideband measurement will show a significant drop in SNR, while the human ear will notice absolutely no change in the audible noise floor. ## 37.8 SteadyClock The SteadyClock technology of the Fireface UCX guarantees an excellent performance in all clock modes. Thanks to a highly efficient jitter suppression, the AD- and DA-conversion always operates on highest sonic level, being completely independent from the quality of the incoming clock signal. SteadyClock has been originally developed to gain a stable and clean clock from the heavily jittery MADI data signal (the embedded MADI clock suffers from about 80 ns jitter). Using the Fireface's input signals AES and ADAT, you'll most probably never experience such high jitter values. But SteadyClock is not only ready for them, it would handle them just on the fly. Common interface jitter values in real world applications are below 10 ns, a very good value is less than 2 ns. The screenshot shows an extremely jittery SPDIF signal of about 50 ns jitter (top graph, yellow). SteadyClock turns this signal into a clock with less than 2 ns jitter (lower graph, blue). The signal processed by SteadyClock is of course not only used internally, but also used to clock the digital outputs. Therefore the refreshed and jitter-cleaned signal can be used as reference clock without hesitation. ## 38. Diagrams ## 38.1 Block Diagram Fireface UCX #### **38.2 Connector Pinouts** ### TRS jacks of analog input / output The stereo 1/4" TRS jacks of the analog inputs and outputs are wired according to international standards: Tip = + (hot) Ring = - (cold) Sleeve = GND The servo balanced input and output circuitry allows to use monaural TS jacks (unbalanced) with no loss in level. This is the same as when using a TRS-jack with ring connected to ground. ## XLR jacks of analog inputs The XLR jacks are wired according to international standards: 1 = GND (shield) 2 = + (hot) 3 = - (cold) ## TRS Phones jack The analog monitor outputs on the front are accessible through stereo 1/4" TRS jacks. This allows a direct connection of headphones. In case the output should operate as Line output, an adapter TRS plug to RCA phono plugs, or TRS plug to TS plugs is required. The pin assignment follows international standards. The left channel is connected to the tip, the right channel to the ring of the TRS jack/plug. # **User's Guide** # Fireface UCX Miscellaneous #### 39. Accessories RME offers several optional components for the Fireface UCX: #### Part Number Description Standard FireWire 400 cable, both sides 6-pin male: FWK660100BL FireWire cable IEEE1394a 6M/6M, 1 m (3.3 ft) FWK660300BL FireWire cable IEEE1394a 6M/6M, 3 m (9.9 ft) FWK660400BL FireWire cable IEEE1394a 6M/6M, 4 m (13 ft) FireWire 400 cable, 4-pin male to 6-pin male (4-pin sockets are found on most laptops): FWK460100BL FireWire cable IEEE1394a 4M/6M, 1 m (3.3 ft) FWK460300BL FireWire cable IEEE1394a 4M/6M, 3 m (9.9 ft) FWK460400BL FireWire cable IEEE1394a 4M/6M, 4 m (13 ft) Note: Cable longer than 15 ft (4.5m) is not specified for FireWire. Optical cable with TOSLINK connectors: OK0100PRO Optical cable, TOSLINK, 1 m (3.3 ft) OK0200PRO Optical cable, TOSLINK, 2 m (6.6 ft) OK0300PRO Optical cable, TOSLINK, 3 m (9.9 ft) OK0500PRO Optical cable, TOSLINK, 5 m (16.4 ft) OK1000PRO Optical cable, TOSLINK, 10 m (33 ft) ADI8-RC Standard Remote control for ADI-8 QS, UFX and UCX ARC Advanced Remote Control for UCX and UFX ## 40. Warranty Each individual Fireface UCX undergoes comprehensive quality control and a complete test at IMM before shipping. The usage of high grade components should guarantee a long and trouble-free operation of the unit. If you suspect that your product is faulty, please contact your local retailer. Audio AG grants a limited manufacturer warranty of 6 months from the day of invoice showing the date of sale. The length of the warranty period is different per country. Please contact your local distributor for extended warranty information and service. Note that each country may have regional specific warranty implications. In any case warranty does not cover damage caused by improper installation or maltreatment - replacement or repair in such cases can only be carried out at the owner's expense. No warranty service is provided when the product is not returned to the local distributor in the region where the product had been originally shipped. Audio AG does not accept claims for damages of any kind, especially consequential damage. Liability is limited to the value of the Fireface UCX. The general terms of business drawn up by Audio AG apply at all times. ## 41. Appendix RME news, driver updates and further product information are available on our website: http://www.rme-audio.com Distributor: Audio AG, Am Pfanderling 60, D-85778 Haimhausen, Tel.: (49) 08133 / 918170 Manufacturer: IMM Elektronik GmbH, Leipziger Strasse 32, D-09648 Mittweida #### **Trademarks** All trademarks, registered or otherwise, are the property of their respective owners. RME, DIGICheck and Hammerfall are registered trademarks of RME Intelligent Audio Solutions. DIGI96, SyncAlign, ZLM, SyncCheck, TMS, TotalMix and Fireface are trademarks of RME Intelligent Audio Solutions. Alesis and ADAT are registered trademarks of Alesis Corp. ADAT optical is a trademark of Alesis Corp. Microsoft, Windows, Windows XP, Windows Vista and Windows 7 are registered trademarks or trademarks of Microsoft Corp. Steinberg, Cubase and VST are registered trademarks of Steinberg Media Technologies GmbH. ASIO is a trademark of Steinberg Media Technologies GmbH. iPhone, iPad, iOS, Mac OS, FireWire, the FireWire symbol and the FireWire logo are trademarks of Apple Computer, Inc. Copyright @ Matthias Carstens, 01/2014. Version 1.6 Current driver and Firmware versions USB: Windows 1.039, Mac OS X: 1.91, Firmware 42, CC 7 FireWire: Windows 3.082, Mac OS X: 3.20, Firmware 23 DSP: Firmware 220. TotalMix FX: 0.996 Although the contents of this User's Guide have been thoroughly checked for errors, RME can not guarantee that it is correct throughout. RME does not accept responsibility for any misleading or incorrect information within this guide. Lending or copying any part of the guide or the RME Driver CD, or any commercial exploitation of these media without express written permission from RME Intelligent Audio Solutions is prohibited. RME reserves the right to change specifications at any time without notice. ## 42. CE / FCC Compliance ### CE This device has been tested and found to comply with the limits of the European Council Directive on the approximation of the laws of the member states relating to electromagnetic compatibility according to RL2004/108/EG, and European Low Voltage Directive RL2006/95/EG. #### **FCC** This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the
following measures: - Reorient or relocate the receiving antenna. - Increase the separation between the equipment and receiver. - Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. - Consult the dealer or an experienced radio/TV technician for help. #### **RoHS** This product has been soldered lead-free and fulfils the requirements of the RoHS directive. #### **ISO 9001** This product has been manufactured under ISO 9001 quality management. The manufacturer, IMM Elektronik GmbH, is also certified for ISO 14001 (Environment) and ISO 13485 (medical devices). ## **Note on Disposal** According to the guide line RL2002/96/EG (WEEE – Directive on Waste Electrical and Electronic Equipment), valid for all european countries, this product has to be recycled at the end of its lifetime. In case a disposal of electronic waste is not possible, the recycling can be done by IMM Elektronik GmbH, the manufacturer of the Fireface UCX. For this the device has to be sent **free to the door** to: IMM Elektronik GmbH Leipziger Straße 32 D-09648 Mittweida Germany The *Basic Remote*, in some special packages included, is a product of RME Trading Ltd., Hong Kong. In case a disposal of electronic waste is not possible, the recycling can be done by Audio AG. For this the device has to be sent **free to the door** to: Audio AG Am Pfanderling 60 D-85778 Haimhausen Germany Shipments not prepaid will be rejected and returned on the original sender's costs.