# Radio Systems Millenium-D Digital Console 

## Installation and Operation Manual

## Radio Systems Millenium Digital Broadcast Manual Part \# MAN-MILLCOND

## For Console Models:

RS-6D
RS-12D
RS-18D
RS-6DNET (include network manual supplement)
RS-12DNET (include network manual supplement)
RS-18DNET (include network manual supplement)

Manual Revision 01-1-2017
for serial numbers 104996 and higher

## Revisions to include

Telephone bus renamed to "PROGRAM.3" bus
UTILITY buses $1 \& 6$ reutilized for program 3
Audition bus renamed to "PROGRAM.2"

Copyright 2010 by Radio Systems Design, Inc. All rights reserved. Radio Systems Design, Inc. reserves specification privileges. Information in this manual is subject to change without notice.

Technical support: +1-856-467-8000 or tech@radiosystems.com
Installation/Wiring/Operation ..... 5
1.1 Console Placement ..... 5
1.2 Opening the Console. ..... 5
1.3 Power Supply ..... 5
1.3.1 Installation ..... 5
$1.4 \quad$ Wiring Access Layout ..... 5
1.4.1 Audio Inputs ..... 5
1.4.2 Audio Outputs ..... 5
1.4.3 Control ..... 6
1.4.4 Audio Connectors ..... 6
1.4.5 Wiring Quick Connectors ..... 6
1.4.6 Grounding and Shielding ..... 6
1.5 Operation ..... 6
1.5.1 Input Assignment ..... 6
1.5.2 Mic Use ..... 7
1.5.3 Cue Circuitry ..... 7
1.5.4 Output Routing ..... 7
1.5.5 Utility Buses ..... 7
1.5.6 Mix-Minus via the PROGRAM. 3 (formerly the "TEL") Bus ..... 7
1.5.7 Monitor Amplifier Output Select ..... 7
1.5.8 Headphone Amplifier Output Select ..... 8
1.5.9 Remote Control ..... 8
1.5.10 Eight Position Switcher ..... 8
1.5.11 Console Clock Timer ..... 8
Illustration A-1 CT-2002 Console Clock/Timer/Master Clock ..... 9
Illustration A-2 CT-2002 Console Clock/Timer Wiring Diagram ..... 10
Illustration A-3 LED Meter Board with Talkback Microphone ..... 11
Six Channel Control Board ..... 12
2.1 Overview ..... 12
2.2 Function Programming ..... 12
2.2.1 Channel Power-Up Mode ..... 12
2.2.2 Remote Control Options - by Channel ..... 12
2.2.3 Remote Control Options - by Input ..... 13
2.2.3.1 Pulse/Holding Remote Control. ..... 13
2.2.3.2 Send Through of Remote On/Off Commands. ..... 13
2.2.4 Muting Buses ..... 13
2.2.5 Timer Reset ..... 13
2.2.6 Cue Options by Channel ..... 14
2.2.6.1 Cue on Fader Detent ..... 14
2.2.6.2 Auto Cue. ..... 14
2.2.6.3 Cue Defeat on Channel ON ..... 14
2.2.6.4 Cue Exclusive ..... 14
2.2.7 Cue Options by Input ..... 14
2.2.8 Off (Ready) Lamp Options ..... 14
2.2.9 Analog/Digital programming ..... 15
2.2.10 Remote Control Connector ..... 15
2.2.11 Optional Remote Control Board ..... 15
2.3 Monitor Control Board ..... 15
Illustration B-1 Six Channel Control Board Jumper Settings ..... 16
Illustration B-2 Remote Control Wiring (factory default with Cue for IFB) ..... 17
Illustration B-3 Remote Control Wiring ("Classic" Mode) ..... 18
Six Channel Audio Mother Board. ..... 19
3.1 Input Connectors ..... 19
3.2 Input Configurations ..... 19
3.2.1 Input Wiring. ..... 19
3.3 Analog Daughter Cards ........................................................................................... 19
3.3.1 Unbalanced Analog Audio 19
3.3.2 Analog Mono Inputs - for Mic and Line Level .......................................................... 19
3.3.3 Input Sensitivity....................................................................................................... 19
3.3.4 Phantom Power........................................................................................................ 20
3.4 Digital Daughter Cards............................................................................................ 20
3.4.1 Unbalanced Digital Audio........................................................................................ 20
3.5 "Patch-Point" Connections........................................................................................ 20

Illustration C-1
Illustration C-2
Illustration C-3
Analog input plug-In Board p/n 15303
21
Digital Input Plug-In Board 15304 ............................................................................ 22
6 Input Mother BoardRJ-45 Connector Version ......................................................... 23
6 Input Mother Board5 Pin Connector Version ......................................................... 24
Output Boards
4.0
4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.3
4.3.1
4.4
4.5
4.6
4.6.1
4.6.2
4.6.3

Overview 25
.
Analog Output Board................................................................................................ 25
PROGRAM. 1 and PROGRAM. 2 Analog Outputs........................................................ 25
PROGRAM. 3 (formerly "TEL") Output ....................................................................... 26
External Monitor and Headphone Inputs ................................................................. 26
Headphone Outputs ................................................................................................. 26
Monitor Sends.......................................................................................................... 26
Digital Output Board................................................................................................ 27
Digital Program Outputs ........................................................................................... 27
Digital Utility Outputs .............................................................................................. 27
RS-232 Connectivity ................................................................................................ 27
Clock Rate (Digital Sync.) ......................................................................................... 28
Eight Position Switcher .............................................................................................. 28
Control Wiring .......................................................................................................... 28
Mute and Timer Reset Bus Connections .................................................................. 28
Talk Back Connections ........................................................................................... 28
Intercom Kit ............................................................................................................. 29
Internal Adjustments and Level Calibration............................................................... 29
Program Bus Output Level Adjust ............................................................................. 29
VU Meter "0" Calibration........................................................................................... 30
Peak LED Trip Point Calibration ................................................................................ 30
4.6.4 External Monitor Input Level ..................................................................................... 30
4.6.5 Cue Bus External Input Level ................................................................................... 30

Illustration D-1 Analog Output and Meter Board 5-Pin ..................................................................... 3
Illustration D-2 Analog Output and Meter Board RJ-45 .................................................................... 32
Illustration D-3 Digital Output and Processor Board RJ-45 .............................................................. 33
Illustration D-4 Digital Output and Processor Board 5-Pin ............................................................... 34
Illustration D-5 Auxiliary Control Relay Wiring................................................................................... 35
Illustration D-6
Illustration E-1
Illustration E-2
Illustration E-3
Illustration E-4
Illustration E-5
Illustration E-6
5.1

Talkback Wiring....................................................................................................... 36
Enhanced Remote Interface Card ............................................................................ 37
Four Source Router Card ......................................................................................... 38
DA Mixer Card ........................................................................................................ 39
DA Mixer Card Programming Examples.................................................................... 40
Intercom Wiring Card................................................................................................ 41
Intercom Card Table-Top Speaker \& Console Interconnection ................................... 42
Description - Overview............................................................................................ 43
Operation................................................................................................................ 43
Installation and Wiring ............................................................................................. 43
Control Wiring ............................................................................................................... 43
Intercom card audio wiring....................................................................................... 43
Console internal wiring ............................................................................................. 43
5.3.2.2 Table-top speaker wiring ......................................................................................... 43
5.3.2.3 Console interconnection.......................................................................................... 44
5.3.2.3 Console interconnection ..... 44
5.4 Calibration ..... 44
Using Active Balanced Circuitry ..... 45
Six Channel Control Board Schematic F-1 ..... 46
Parts Layout F-2/3 ..... 47
Parts List F-4/5. ..... 48
Monitor Board Schematic F-6 ..... 49
Parts Layout F-7/8 ..... 52
Parts List F-9 ..... 54
CT-2002 Clock/Timer Schematic F-10/11 ..... 55
Parts Layout F-12. ..... 57
Parts List F-13/14/15. ..... 58
Analog Output Board Schematic F-16/17/18 ..... 61
Parts Layout F-19 ..... 64
Parts List F-20/21/22 ..... 65
Power Supply Interface Schematic F-23 ..... 68
Parts Layout F-24/25. ..... 69
Parts List F-26 ..... 71
Console DA Mixer Schematic F-27/28 ..... 72
Parts Layout F-29 ..... 74
Parts List F-30 ..... 75
Console VU Meter Schematic F31 ..... 76
Console VU Meter Schematic F32. ..... 77
Millenium Digital Console Specifications ..... 78
Frequency Response. ..... 79
Millenium Digital Consoles Parts Ordering ..... 80
Millenium Consoles - Warranty and Repair Policies Warranty ..... 81
Repair Policy ..... 81
Return Instructions ..... 81
Millenium - Digital Console Software ..... 82
Overview. ..... 82
Utility Buses ..... 83-85
Output Levels ..... 86
Channel Settings ..... 87-89
8 Position Switches ..... 90
Communications/Serial COM Port ..... 91-92
Help Screens ..... 93

## Installation/Wiring/Operation

### 1.1 Console Placement

Because neither ventilation nor rear access is required, the console may be mounted on any sturdy surface. Opening the lid provides access to all electronics, internal controls and wiring points.
After placing the console, open the lid and mark the cable access slots on the chassis bottom on the table surface. Remove the console and cut the slots with a saber saw. The console may then be permanently mounted with two \#10 sheet metal screws inserted through the two holes provided in the front of the chassis' bottom pan.

### 1.2 Opening the Console

A " $T$ "-shaped lifter is provided to open the console. The external lifter discourages unauthorized access to console electronics. Keep it in a secure place. Resist the urge to use the right-hand rotary knobs to raise the console lid as this will quickly result in damage to these faders.
This lifter can be inserted in any fader slot, rotated $90^{\circ}$ and used to raise the lid. Once the lid is opened, pull the two hinges forward to lock the lid open.
To close the lid, push the hinges in to release the locks, while holding the lid up with the " $T$ " lifter, and gently lower the console.

### 1.3 Power Supply

### 1.3.1 Installation

All console operating voltages are provided by the external power supply that connects to the console via a multi conductor cable. A ten-foot length is provided as standard equipment. Longer lengths, up to 20 feet, are available from the factory.
To connect the console end of the power supply cable, pass the other end of the cable (with the smaller ground lug) through the rectangular hole on the center right-hand-side of the console base. Screw the ground lug under the mounting screw on the front right hand side of the Output Board. Plug the 10 position connector into J3 and the 4 position connector into J4. Take extreme care to plug these connectors in with the correct orientation - locking tab to locking tab (with cables exiting towards the right hand side), as it is possible to plug them in backwards.

A grounding stud is provided on the rear of the power supply. Console grounds reach a common point at the power supply. To minimize RFI and potential ground loop problems, the console should only be connected to station ground at this one ground stud.

In intense RF environments, or if you experience any RFI problems, consult RFI suppression in the Troubleshooting and Theory of Operation Section for detailed information.

### 1.4 Wiring Access Layout

### 1.4.1 Audio Inputs

All audio inputs wire to connectors at the rear the Six Channel Mixer Board(s) on the base of the console. One Six Channel Input Mother Board is utilized for every 6 audio channels and supports and houses any combination of up to six plug-in Analog or digital Input Daughter Cards. Analog or digital inputs are wired via the same audio connectors. Pin-out diagrams are provided in the Six Channel Mixer Board section.

### 1.4.2 Audio Outputs

All audio outputs wire to connectors at the rear of the Analog and Digital Output Boards on the right-hand pan of the console. Note that these two circuit boards are stacked, with the digital board on top. The lower Analog board houses all analog Program Outputs, External monitor inputs, Monitor sends and Talkback and muting audio and control. The upper digital output board houses all digital program outputs, as well as analog and digital Mix Minus outputs.

### 1.4.3 Control

The front panel mounted Six Channel Control Board houses one 15 pin D connector to wire each channel's remote control.
Consult the Six Channel Control Board Section of this manual for detailed information on control remote functions and programming options. Consult the Interface Options and Accessories Section of this manual for detailed information on the optional interface card applications, wiring and function.

Use the included 15-pin D connector ribbon extenders to plug in the mating D connectors external to the console, as internal clearance for these connectors is not available inside the console.

### 1.4.4 Audio Connectors

Millenium Digital consoles may be ordered with 5-pin removable barrier strip connectors or with RJ-45 connectors for all audio inputs and outputs. Consult the circuit board layout diagrams in the Six-Channel Mixer board and the Output and Meter Board section of this manual for connector locations and wiring pin-outs.

### 1.4.5 Wiring Quick Connectors

The 5-pin barrier strip connectors are identical to those that are used in Millenium Analog consoles. When hand wiring 5-pin removable barrier strip connectors, use 22 AWG shielded wire for audio connections. The cable should be stripped so that the insulation comes close to, but does not enter, the connector. Insert the cable into the connector and tighten the screw. If desired, first tin the cable to ensure a secure connection.

The RJ-45 connectors conform to the StudioHub+ standards for analog and digital CAT-5 based wiring. When using the RJ-45 connectors, conform wiring to 568B CAT-5 standards and follow standard IT CAT-5 practices, or utilize premade StudioHub+ wiring and accessories. See http://www.studiohub.com for more information.
StudioHub+ wiring harnesses that bring all input and output connections to convenient connection blocks outside the console are available from Radio Systems. Consult the factory for literature.

### 1.4.6 Grounding and Shielding

The installer should elect whether cable shields will terminate (connect) on the equipment side or console side. The general rule is that shields should not be terminated on both to avoid ground loops.

For shields that do terminate on the console side, on-board jumpers are provided for every input and output, analog and digital on both the Six-Channel Mixer Board and the Output Boards to allow the programming of the following ground options for each cable:
1- Unterminated; insert no jumper for the ground to float
2- Chassis Terminate; insert a jumper between the center and "CH" pins to connect the cable ground to the console chassis ground. This option is recommended for digital (AES-EBU) inputs and most analog signal.

3- Circuit Board Terminate; insert a jumper between the center and "CB" pins to connect the cable ground to the console circuit board grounds. In the case of the Six-Channel Mixer Board this will connect the cable ground to separate and isolated console ground buses for both the Analog and digital daughter plug-in cards. This option is recommended for some Analog signals (AES-EBU), inputs and most analog signals.

### 1.5 Operation

Millenium digital Consoles have been designed to offer the greatest combination of user flexibility and operating ease. Foremost, the console should be installed and operated in accordance with station format, personnel habits and engineering principles. However, the following sections suggest some operational possibilities that were considered in the console design.

### 1.5.1 Input Assignment

Traditionally, commonly used inputs are assigned to input "A". This gives the operator quick assurance of proper input selection.

### 1.5.2 Mic Use

Mic channels should always be activated with the slider down, and then "potted up" to avoid a sudden "room rush" of background sound.
Cue speaker muting is only provided when a mixing channel is turned "on". Therefore, feedback can occur between the cue speaker or the monitor speakers (if cue monitoring is selected) and a mic input if the mic channel is placed in cue. To avoid this possibility, install the cue inhibit jumpers on the section of the Six Channel Control Board associated with the mic channel. This will prevent a mic channel from entering the cue mode and possibly cuing feedback. Consult the Six Channel Control Board Section for details on programming information.

### 1.5.3 Cue Circuitry

Unless disallowed by jumper removal, all selected inputs maybe placed on the cue bus by depressing the cue button, located above the fader. Refer to Section 2.2 for additional information.

The cue signal is monitored by the cue speaker, and level adjusted by the front panel cue level control. The cue speaker is muted by any input that is turned "on" and that was pre-selected during installation to activate the Mute 1 control bus. The internal cue speaker may be disconnected and a remote speaker connected in its place. Consult the Output Board Section for detailed information on wiring.
In addition, the cue signal maybe selected for monitoring by the headphone or monitor amplifier select switches.

### 1.5.4 Output Routing

Each mixing channel can be routed to any combination of PROGRAM.1, PROGRAM.2, and PROGRAM. 3 mix buses. All buses provide identical stereo performance allowing them to be used as a back up to the airchain, as a separate program bus, or to preview or record material. Note that PROGRAM. 3 features an additional analog mixed mono output.

### 1.5.5 Utility Buses

Millenium digital consoles feature 10 fully programmable utility buses. Via software programming every input may be routed to any mix minus bus on a pre or post fader, or pre or post on-off switch basis.

Applications for the Utility buses include traditional "mix minus" uses, fold-back monitoring special monitor sends and intercom functions.

Mix minus configurations can ONLY be changed via the Millenium PC software link. Consult the software section for connection, programming and configuration options.

Note that UTILITY buses $1 \& 6$ are genrally utilized for PROGRAM. 3

### 1.5.6 Mix-Minus via the PROGRAM. 3 (formerly the "TEL" Bus)

Talk show hybrid telephone patches frequently require a return feed to the caller that does not contain his own voice (mix minus). To accomplish this, the host may be routed to PROGRAM. 1 and PROGRAM. 3 and the caller to PROGRAM. 1 only. The PROGRAM. 3 bus should then be fed back to the telephone hybrid and Program audio used to feed the air chain. To prevent feedback in this application, the studio monitor speakers should not be used.

A "fold back" feed can also be created by feeding all microphone inputs into the PROGRAM. 1 mix bus, and feeding all other inputs to both PROGRAM. 1 and PROGRAM. 2 mix buses. Switch the monitor speakers to PROGRAM. 2 and feed the air chain with program signal. In this application, the mic inputs need not mute the monitor speakers, as no feedback will result.

### 1.5.7 Monitor Amplifier Output Select

The monitor input select switches on the right-hand side of the console allow monitoring of the PROGRAM buses, cue and four external stereo inputs which are common to the monitor and headphone circuitry. All monitor outputs follow these switches. Level adjustment for the control room monitor output is provided on the front panel. In addition, the control room monitor output is dimmed to a level that has been preset by a trimmer on the Output Board by the Mute 1 control bus. A studio monitor output that is muted by the Mute 2 bus, and an unmuted monitor output are also provided. In addition, a prefader, unmuted monitor output is available.

### 1.5.8 Headphone Amplifier Output Select

The headphone input select switches on the right-hand side of the console allow monitoring of the PROGRAM buses, cue and four external stereo inputs which are common to the headphone and monitor circuitry. All headphone outputs follow these switches. Level adjustment and connection for the operator's headphones are provided on the front panel. In addition, a pre-fader headphone output is available for driving an external headphone amplifier.

### 1.5.9 Remote Control

The Millenium Consoles provide extensive remote control interface ability via a 15 pin D connector located at each mixing channel. Each channel has the capability to remote start almost any source. In addition, each channel provides inputs for remote control of channel on/off and ready lamp illumination.
Sophisticated control interface is also accommodated via the use of the optional interface card (RS Part\# REMOTE). See Section 2.2.11 and Illustration E-1 for additional information.

Use the included 15 -pin D connector ribbon extenders to plug in the mating D connectors external to the console, as internal clearance for these connectors is not available inside the console.

### 1.5.10 Eight Position Switcher

Eight accessory switchers are provided on the right-hand side of the console control panel for optional user control of external equipment, console accessory boards and mix-minus sends. The switches and their associated LED indicators are wired directly to the digital output board and read by the digital processor. Connections for accessory boards and special external switching are then made directly to connectors J39 and J43 on the digital out-put board. Consult section 2.3 in the Six Channel Control Board section and diagrams D-3 and D-4 in the Output Board section for more information.

### 1.5.11 Console Clock Timer

All Millenium consoles include a Radio Systems CT-2002 clock/timer in the upper right section of the console overbridge. Front panel console controls are provided to locally set the time of day and control timer functions. An IR Remote Control optionally available to set timer down times. Time of Day displays function as clocks or timers and may also be used as slaved clock display synchronized from either RS Timecode, SMPTE Timecode, or a Top-of-Hour reset pulse.
Consult illustrations A-1 and A-2 at the end of this section for clock wiring and operation.

## Illustration A-1 CT-2002 Console Clock/Timer/Master Clock



## General Operating Instructions

All units may operate in stand-alone or slave displays. Clock Set and Up Timer functions can be controlled by the front panel buttons or the infra-red remote control. However, the IR remote control is required for entering down times and internal setup functions.

## Console Front Panel or Wired Remote Operations

## Clock/Timer (Mode) Select

All CT-2002 unites operate as both clocks and timers. Switch between modes by pressing the MODE button on the console front panel. The front panel LED will light to indicate the mode selected.

## To Set the Clock:

1. Press the mode button to select the time-of-day display. The clock LED will illuminate.
2. Press and hold the STOP and START buttons. The set LED will illuminate. The display will reset to 12:00:00.
3. Press the STOP button to advance the hours. Press the RESET button to advance the minutes (note - seconds are not setable and remain at:00.
4. Start the clock at the top of the minute by pressing the START button. The set LED will extinguish.

Note: If Serial Time of Day is supplied to the CT-2002 (slave mode), it will not be possible to enter the Clock Set Mode. Time-of-Day set can be done at the master unit. The displayed hours can be offset via the IR Remote Control.

## To Use the Up Timer

1. Press the Mode Button to select the timer display. The timer LED will illuminate.
2. Press the START button to start timing.
3. Press the STOP button to stop timing.
4. Press the RESET button to return the display to 00:00

Note: Press the Auto button to allow automatic reset and start of the timer when a console channel on button is depressed. (programming of JU15 for input A or JU17 for input B to allow this function on each channel is required.)

## Illustration A-2

 CT-2002 Console Clock/Timer Wiring Diagram

## Illustration A-3 <br> LED Meter Board with Talkback Microphone

Radio Systems p/n 16636


## Six Channel Control Board

### 2.1 Overview

One Six Channel Control Board is provided for every six input channels. This card sends DC control voltages to the Six Channel Audio Board that:

> Selects A/B Inputs

Sets output bus and cue routing
Sets input level attenuation
Activates muting buses
Activates timer reset bus

This information is conveyed via 16 conductor ribbon cables; one cable for every mixing channel.
Eighteen programming straps also reside on this board at each channel position and are used to set all unique channel and input board functions.

The board also includes a 15 pin remote control connector for each channel providing user access to all remote and channel functions.
Programming options available for each channel include:
Remote Control Options - by channel
Remote Control Options - by input
Muting Buses - by input
Timer Reset - by input
Cue Options- by channel
Cue Options - by input
Off (ready) lamp control operations - by input

### 2.2 Function Programming

### 2.2.1 Channel Power-Up Mode

This programming feature will memorize channel input, bus, and on/off state so that the channels will automatically return to these memorized states on power up. The default power up mode (with no programming) is Input A, PGM and channel OFF.

To utilize this feature, select the combination of input, bus, and on/off states that are desired at power up on a particular channel. Next, press and hold the ON switch for 5 seconds. The ON lamp will blink, indicating that this power up preset is memorized.
Repeat this procedure for each channel where special power up states are desired.

### 2.2.2 Remote Control Options - by Channel

Fader Start - The channel may be programmed to automatically turn on whenever the fader is brought out of the detent (cue) position. All programmed channel on functions (e.g. remote starts or timer reset) will activate at this time.
Note that a special order fader with detent (RS Part \#P\&G) is required for this option.
Insert jumper A to activate.
Default is no jumper; no fader start

### 2.2.3 Remote Control Options - by Input

### 2.2.3.1 Pulse/Holding Remote Control

Insertion of these jumpers determine whether the remote control pins on the remote control connector pulse to ground when the channel is turned on, or remain at ground potential for the duration of the channel on state.

Pulse mode is generally used for PC and CD player control. Holding mode is generally selected for skimmer and other units that require on/off control.

$$
\begin{aligned}
& \text { Insert jumper } \mathbf{H} \text { for input A - holding mode. } \\
& \text { Default is no jumper; pulse mode. } \\
& \text { Insert jumper } \mathbf{C} \text { for input B - holding mode. } \\
& \text { Default is no jumper; pulse mode. }
\end{aligned}
$$

### 2.2.3.2 Send Through of Remote On/Off Commands

Installation of these option jumpers will cause channel on/off commands that were initiated remotely (i.e. sent to the channel via remote connector pins $1,2,5$, or 12 ) to, in turn, create remote on/off output pulses (i.e. send remote control commands to external equipment via remote connector pins $3,4,7$, or 11). Normally, you would not want these remote channel commands to be "sent through", thereby creating a new command and potentially retriggering the remote device via a false echo of the original command. This situation would apply when a remote device is wired to both control and be controlled by an input channel; typically the case with a digital storage system that is wired to be both remotely started by the channel, and turn off the console channel at the end of the audio cut.

> Insert jumper $\mathbf{D}$ to enable send through in input $A$.
> Default is no jumper; no send through.
> Insert jumper $\mathbf{B}$ to enable send through in input $B$.
> Default is no jumper; no send through.

### 2.2.4 Muting Buses

Two muting buses, referred to as mute 1 and mute 2, perform the following functions:
Mute Bus 1 - mutes the cue speaker, dims monitor send \#1, pulls mute 1 terminal 5 to ground on Output Board connector J7.
Mute Bus 2 - mutes monitor send \#2, pulls mute 2 terminal 4 to ground on Output Board connector J7.

$$
\begin{aligned}
& \text { Insert jumper } \mathbf{T} \text { for input A to mute bus } 1 \text {. } \\
& \text { Default is no jumper; no mute. } \\
& \text { Insert jumper } \mathbf{P} \text { for input A to mute bus } 2 \text {. } \\
& \text { Default is no jumper; no mute } \\
& \text { Insert jumper } \mathbf{V} \text { for input B to mute bus } 1 \text {. } \\
& \text { Default is no jumper; no mute } \\
& \text { Insert jumper } \mathbf{R} \text { for input B to mute bus } 2 \text {. } \\
& \text { Default is no jumper; no mute }
\end{aligned}
$$

### 2.2.5 Timer Reset

Inserting timer reset jumpers activates of the timer reset bus in conjunction with a selected input. The bus will go low momentarily ( 100 ms ) when the mixing channel is first placed into the "On" mode. Depressing the "On" button after the channel is already turned "On" will result in another pulse of the bus.

> Insert jumper $\mathbf{S}$ for input A to reset the timer.
> Default is no jumper; no timer reset.
> Insert jumper $\mathbf{V}$ for input B to reset the timer.
> Default is no jumper; no timer reset.

### 2.2.6 Cue Options by Channel

### 2.2.6.1 Cue on Fader Detent

Enable this function to allow the operator to put the channel in cue by dropping the fader into the detent (fully down) position. Note that a special-order fader with detent (RS Part \#P\&G) is required for this option.

> Insert jumper $\mathbf{K}$ to enable cue on detent
> Default is no jumper; no cue on detent

### 2.2.6.2 Auto Cue

Cue follows channel On/Off mode with this option enabled. The channel will automatically go into cue whenever the channel is turned off. With this function enabled, cue still can be activated via the cue switch or fader detent.

Insert jumper $\mathbf{J}$ to enable auto cue
Default is no jumper inserted; no auto cue

### 2.2.6.3 Cue Defeat on ChanneI ON

Insert jumper F to cause the Cue Mode to be turned OFF whenever the channel is cycled from OFF to ON. Cue must then be manually reselected when the channel is turned OFF.

### 2.2.6.4 Cue Exclusive

In the Millenium digital console the "Cue Exclusive" function is available only via software selection. See the "Channel Settings" page in the software section of this manual for programming details.

### 2.2.7 Cue Options by Input

Install these jumpers to disallow the channel from going into cue when a particular input is selected. This option is normally utilized for a control room mic input to avoid feedback from the cue speaker. When this option is enabled, the cue button is automatically reprogrammed to act as a cough button (hold-to-mute) for that input.

> Install jumper $\mathbf{M}$ for no cue on input $A$.
> Default is no jumper; cue in input $A$.
> Install jumper $\mathbf{L}$ for no cue on input $B$.
> Default is no jumper; cue in input $B$.

### 2.2.8 Off (Ready) Lamp Options

These jumpers allow for local (console) or remote (source) control of the channel off (ready) lamp via the remote control connector.
Install jumper $\mathbf{X}$ between the left and middle header pins for input A local Off lamp control.
Install jumper $\mathbf{X}$ between the middle and right header pins for input A remote Off lamp control.
Default is left and middle pins jumpered; local off lamp control.
Install jumper W between the left and middle header pins for input B local Off lamp control.
Install jumper $\mathbf{W}$ between the middle and right header pins for input B remote Off lamp control.
Default is left and middle pins jumpered; local Off lamp control.
See Illustration B-1, Pg16

### 2.2.9 Analog/Digital programming



Three-pin Jumper $\mathbf{Z}$ must be installed between the middle and upper pins in the Millenium Digital console, on every channel. This communicates channel on/off status to the console processor.

### 2.2.10 Remote Control Connector

A 15-pin D connector is provided on the Six Channel Control Board for each channel to access all remote functions.
All control (input) functions are activated via a momentary pull-to-ground, except the "cough" function, which must be held to +15 V . All control output functions are open lines which go low when the function is activated. Lamp drivers are current-sinking inputs.
Two modes of remote control functionality are available via recently supplied PROMS. These modes are selected via the installation of jumper JU-213. In the default mode (JU-213 not installed,) remote control cue for IFB applications is provided. With JU-213 installed, "Classic" remote controll functionality, indentical to previous PROM versions is provided.

Refer to Illustration B-2 and B-3 for a pin-by-pin reference descriptions and wiring diagram.
Use the included 15-pin D connector ribbon extenders to plug in the mating D connectors external to the console, as internal clearance for these connectors is not available inside the console.

### 2.2.11 Optional Remote Control Board

Radio Systems' optional Remote Board (RS Part \# REMOTE) connects to the remote control connector and provides the user with programmable relay interface for channel remote control outputs and opto-isolated input to channel on/off and off lamp functions. Consult the interface option section for more details and pin-out and wiring diagrams.

### 2.3 Monitor Control Board

One monitor card (RS Part \#10887) is installed on the right-hand side of the console front panel. It provides all monitor and clock switching and logic functions.


#### Abstract

Software The monitor board also provides eight uncommitted, illuminated momentary switches for remote control of source equipment. These switches and LED's are connected to and read by the processor on the digital output board. The processor may be set, via software screens, for various push-on / push-off momentary and switch interlock states. The Eight Position Switches may also be programmed to control utility bus main/ alternate configuration switching. Consult the "Eight Position switches" page in the software section of this manual for more information.


Connectors J-39 and J-43 on the digital output board are provided to interface with the console four source switcher option board (RS Part \# ROUTER) and console intercom board (RS Part \# INTERCOM). Consult the interface option section for more information.

See Illustration B-1, Pg16

## Illustration B-1 <br> Six Channel Control Board Jumper Settings for Millenium Digital Consoles

Part \# 18522

Rear of Console


Front of Console Input Control Board (Channel One Shown)

## Board Location*

A Install for fader start (special order fader required)
B Install for remote B start and stop commands to control the remote outputs
C Install for input B to hold and remove for input B to pulse the remote pulse/hold outputs
D Install for remote A start and stop commands to control the remote pulse/hold outputs
$E^{R} \quad$ Install for "classic" remote control protocols
$F^{Q} \quad$ Install to disengage cue when channel is turned on
H Install for input A to hold and remove for input A to pulse the remote pulse/hold outputs
Ja Install for cue to follow the on/off mode ("Auto-Cue")
$K^{@} \quad$ Install for cue on fader detent (special order fader required)
LQ Install for no cue in input B (cue switch is now cough for input B)
$\mathrm{M}^{\bullet} \quad$ Install for no cue in input A (cue switch is now cough for input A)
N No Connect in Digital Consoles
P Install for Input A mute 2
R Install for input B mute 2
S Install for timer reset with input A
T Install for input A mute 1
U Install for timer reset with input B
V Install for input B mute 1
W Input B stop lamp local/remote jumper. Jump pin 2 to center pin for local console lamp control (Jump pin 1 and center pin for remote lamp control)
X Input A stop lamp local/remote jumper. Jump pin 2 to center pin for local console lamp control (Jump pin 1 and center pin for remote lamp control)
Y Jumper must be installed between pin 2 and center pin for cue bus lamp normal operation
Z Jumper must be installed between pin 2 and center pin for digital console operation

## Notes:

Items in bold are factory default jumper settings.
See following page for remote control connector pin-outs.
Consult section 2.2 for a detailed explanation of control programming and functions.
${ }^{\text {Q }}$ Cue Options - Consult manual section 2.2.6 and 2.2.7 for various cue modes and operational descriptions.
${ }^{\text {RRemote Options - See illustration B-2 and B-3 for remote control }}$ options, settings and wiring.

## Illustration B-2 <br> Remote Control Wiring - with remote cue available for IFB

(for console models shipped after 10/15/10 with control prom PN: 18407)
Note: Jumper E on Input Control Board must be removed to initiate this mode of remote control (this is factory default setting)
Remote Control On/Off Inputs to the Console Channel


## Functions Descriptions

| Pin \# | Function |
| :---: | :--- |
| $\mathbf{1}$ | Input to engage channel memory recall ** |
| $\mathbf{2}$ | Input to engage the cue mode when either input A or B is selected |
| $\mathbf{3}$ | Output from the console to stop a source if input A is selected |
| $\mathbf{4}$ | Output from the console to start a source if input B is selected |
| $\mathbf{5}$ | Input to turn the console channel off when either input A or B is selected |
| $\mathbf{6}$ | Input to turn the console channel off Lamp Control - Input A |
| $\mathbf{7}$ | Output from the console to start a source if input A is selected |
| $\mathbf{8}$ | Holding input to turn the console channel off (cough function) |
| $\mathbf{9}$ | Remote channel off lamp |
| $\mathbf{1 0}$ | Ground |
| $\mathbf{1 1}$ | Output from the console to stop a source if input B is selected |
| $\mathbf{1 2}$ | Input to turn the console channel on when either input A or B is selected |
| $\mathbf{1 3}$ | Input to turn the console off lamp on if input B is selected |
| $\mathbf{1 4}$ | Remote channel on lamp |
| $\mathbf{1 5}$ | +15V |

## Notes

[^0]
## Illustration B-3 Remote Control Wiring - "Classic" Version

 (for console models shipped after 10/15/10 with control prom PN: 18407)Note: Jumper JU213 on Input Control Board must be installed to initiate this mode of remote control


## Functions Descriptions

| Pin \# | Function |
| :---: | :--- |
| $\mathbf{1}$ | Input to turn the console channel on if input B is selected |
| $\mathbf{2}$ | Input to turn the console channel off if input B is selected |
| $\mathbf{3}$ | Output from the console to stop a source if input A is selected |
| $\mathbf{4}$ | Output from the console to start a source if input B is selected |
| $\mathbf{5}$ | Input to turn the console channel off if innut A is selected |
| $\mathbf{6}$ | Input to turn the console channel on if input A is selected |
| $\mathbf{7}$ | Output from the console to start a source if input A is selected |
| $\mathbf{8}$ | Holding input to turn the console channel off (cough function) |
| $\mathbf{9}$ | Remote channel off lamp |
| $\mathbf{1 0}$ | Ground |
| $\mathbf{1 1}$ | Output from the console to stop a source if input B is selected |
| $\mathbf{1 2}$ | Input to turn the console channel on if input A is selected |
| $\mathbf{1 3}$ | Input to turn the console off lamp on if input B is selected |
| $\mathbf{1 4}$ | Remote channel on lamp |
| $\mathbf{1 5}$ | +15V |

## Notes

*These functions require programming on the input control card. See preceding page for details. Control inputs tot he console (pins $1,2,5 \& 12$ ) require a momentary contact to ground to activate Lamp Control inputs to the console (pins $6 \& 13$ ) require a holding contact to ground to activate. Control outputs from the console (pins $3,4,7 \& 11$ ) are open collector lines which go low (to ground) when activated. The cough button (pin 8 ) requires a holding connection to +15 volts (pin 15) for the duration of the function.

## Six Channel Audio Mother Board

### 3.1 Input Connectors

The Millenium digital console may be ordered factory equipped with either 5-pin removable barrier strip connectors or RJ-45 style connectors. RJ-45 connectors are wired to the StudioHub+ audio standard. Both connectors accommodate either mono or stereo balanced or unbalanced analog connectivity or balanced AES-EBU or unbalanced S/PDIF connections. Illustrations $\mathrm{C}-3$ and $\mathrm{C}-4$ show the location of these various input audio connectors.

### 3.2 Input Configurations

One six-channel input board is provided per six console inputs and mounted on the lower inside pan of the console. The Six Channel Input Audio board houses up to six plug-in analog or digital daughter cards. These plug-in cards configure both inputs of any channel to accept either analog (stereo mic thru line level) or digital (stereo AES-EBU or S/PDIF) signals. Cards can be plugged into any slot and no hardware or software programming is necessary for the console to "recognize" an analog or digital card.

### 3.2.1 Input Wiring

Every input, from mic thru high level, wires to the input connectors. One 5 pin connector or one RJ- 45 connector is provided for each channel "A" input and another is provided for each "B" input. Each connector handles left and right balanced audio or stereo AES-EBU or S/PDIF digital audio from the source equipment.
The connectors also provide a grounding point for the audio inputs. Grounds should be connected at either the console or equipment and not at both ends, to avoid ground loops. The console is usually used as the grounding reference point.

See section 1.4.6 "grounding and shielding" in the 'Installation, Wiring and Operations" section for more information.

### 3.3 Analog Daughter Cards

The universal, dual input, analog plug-in cards accommodate stereo or mono, balanced or unbalanced, low or high (bridging) impedance, mic thru line level inputs. Any combination of these signals can be applied to the A or B inputs. Various wiring configurations and jumpers program the cards to accept these different signal types.

### 3.3.1 Unbalanced Analog Audio

If an unbalanced analog audio source is to be connected to the console, single conductor shielded cable or two conductor shielded cable with a foil shield around each conductor should be used. The audio should be connected to the + input, while the shield should be connected to both the - input and Ground. In this case, the shield is connected at both ends of the cable.

### 3.3.2 Analog Mono Inputs - for Mic and Line Level

To connect an analog input so that it feeds both the left and right channels, connect the + Left Input to the + Right Input, and connect the - Left Input to the - Right Input. The source will not be loaded, due to input impedance of 20K ohms for high-level inputs and 4.5 K ohms for microphone inputs. Inputs jumper programmed for mic level are automatically set to mono with the left channel summed to both left and right.

### 3.3.3 Input Sensitivity

Input levels can be independently programmed for A\&B inputs via on board jumpers. Jumpers are provided for 9 mic gain settings, as well as +10 and +20 gain boost to line level inputs to accommodate low-level (consumer type) outputs without the need for external matching amplifiers. Consult illustration C-1 for jumper locations.

Input levels can be pre-trimmed or boosted in console software in .1 dB steps over a 25 dB range. Consult the "Channel Settings" page in the "Software" section of this manual for more information.

### 3.3.4 Phantom Power

A mic may be supplied with Phantom power by installing jumper JU-12 on the Analog daughter plug-in card and a jumper on pins 4 \& 5 on J-7 on the digital output card. Consult illustrations D3 or D4 for jumper locations.
Note that the console provides +15 volts phantom mic power, which is suitable for most microphones. Consult the factory if a different (higher) phantom voltage is required.

### 3.4 Digital Daughter Cards

These universal, dual input, digital plug-in cards feature on-board sample rate conversion and accommodate stereo, balanced or unbalanced, 32 thru 92 KHz AES-EBU or S/PDIF audio. Any combination of these signals can be applied to the A or B inputs. Various wiring configurations and jumper programming exist on the cards to accept these different signal types.

### 3.4.1 Unbalanced Digital Audio

If an unbalanced digital audio signal (S/PDIF) is to be connected to the console, wire the coaxial center to the Left channel + pin, and the coaxial shield to the - and ground pins. Note that JU-1 (for Input B) and JU-2 (for Input A) must be inserted for 75 ohm (unbalanced S/PDIF) termination.

## 3.5 "Patch-Point" Connections

All hard-wired patch points previously available on Analog Millenium consoles have been replaced with software configurable Utility buses. Consult the "Utility Buses" page in the "Software" section of the manual for more information.

## Illustration C-1 Analog input plug-In Board p/n 15303

This board provides two stereo analog inputs
Mic thru line level are jumper selectable for each individual input.
This board can be plugged into any slot on the 6 input motherboard


## Illustration C-2 Digital Input Plug-In Board 15304

This board provies two AES/EBU or S-P/DIF digital inputs.
On-board automatic sample rate conversion accommodates any source sample rate. This board can be plugged into any slot on the 6 input motherboard.



Illustration C-4
6 INPUT MOTHER BOARD 5 PIN CONNECTOR VERSION p/n 14904

## Description

This board houses 6 channels of DIGITAL or analog output cards. Cards can be inserted in any slot.
This 5 -pin connector version of the board utilizes 5-pin removeable barrier strip connectors for all analog and DIGITAL audio I/O. This 5 -pin connector version of the board utilizes 5-pin removeable barrier strip connector
One of these boards per each 6 console channels mounts on the lower right of the console

*insert digital plug-in card jumper JU-1 (for input B) and JU-2 (for input A) for 75 Ohm termination.

## Output Boards

### 4.0 Overview

In the Millenium digital console two circuit boards provide all audio outputs and certain other related functions. The two large circuit boards are mounted on top of each other and are located on the right-hand inside pan of the console. The lower board provides most of the analog output functions and is identical to the circuit board utilized in Millenium analog consoles. The upper board provides mostly digital functions. A metal shield mounts between the boards for interference isolation. Trim pots on the lower board are accessible through holes with silk-screened legends in the upper board. I/O connectors on the lower board can be accessed in the rear where the upper board is cut back.

Millenium digital console output boards may be ordered factory equipped with either 5-pin removable barrier strip connectors or RJ-45 style connectors. RJ-45 connectors are wired to the StudioHub+ audio standard. Both connectors accommodate either mono or stereo balanced or unbalanced analog connectivity or balanced AES-EBU or unbalanced S/PDIF connections. Illustrations D3 and D4 show the location and pin-outs of these various audio connectors.

### 4.1 Analog Output Board

The Analog (lower) circuit board provides the following console functions:

$$
\begin{aligned}
& \text { Line output amplification } \\
& \text { Cue amplification } \\
& \text { Headphone amplification } \\
& \text { External Inputs } \\
& \text { Monitor sends Meter and peak LED functions } \\
& \text { Level sets for all functions } \\
& \text { Muting and timer reset functions } \\
& \text { Power supply interface } \\
& \text { Talk back circuitry }
\end{aligned}
$$

### 4.1.1 PROGRAM. 1 and PROGRAM. 2 Analog Outputs

The PROGRAM. 1 and PROGRAM. 2 outputs provide identical stereo performance, are active balanced, and factory calibrated, with a 600 ohm load, to provide +4 dBm when the front panel VU meters read "0" VU. This will provide in excess of 20 dB of headroom. Adjustments for output levels, meter calibrates, and peak LED trip points are provided on the Analog Output Board (with access to these controls via holes on the upper digital output board,) so that other output levels maybe set.

The outputs will drive a 600 ohm load or higher. The outputs are connected via either a five position screw type barrier strip or RJ-45 connectors that are mounted onto headers J30 (PROGRAM.1), and J29 (PROGRAM.2), located on the Analog Output Board.


Analog output levels for the PROGRAM.1, PROGRAM. 2 and PROGRAM. 3 buses can be pre-trimmed or boosted in console software in .1 dB steps to a maximum of +4 dB out. Consult the "Output Level" page in the "Software" section of this manual for more information.

When hand wiring the 5-pin connectors, is recommended that two conductor shielded cable, or two pair shielded cable be used in wiring all balanced audio inputs to the console. To minimize RF interference and ground loops, the shields should be tied to ground only at one end of the cable. See manual section 1.4.6 "Grounding and Shielding" for more detailed information.
If an unbalanced console output is required, single conductor shielded cable or two conductor shielded cable with a foil shield around each conductor should be used. The audio should be taken from the + Output terminal, while the shield should be connected to Ground. In this case, the shield is connected at both ends of the cable. There should be no connections to the - Output. In this configuration, the console output will provide -2 dBm into a 600 ohm load when the front panel VU meters read " 0 " VU .

### 4.1.2 PROGRAM. 3 (formerly "TEL") Output

The PROGRAM. 3 output is connected via a five pin screw type barrier strip or RJ-45 connector labeled "TEL" on header J33, on the Output Board.
The two "PROGRAM.3" Outputs provided are in parallel, from the same amplifier. The combined load on the amplifier from both mono sends should be no less than 600 ohms.

In other aspects, the performance and connections to the "PROGRAM.3" Output are identical to the PROGRAM. 1 and PROGRAM. 2 outputs.

### 4.1.3 External Monitor and Headphone Inputs

Four balanced, stereo, high impedance ( 4.7 K ohm) inputs are provided which feed both the headphone and the monitor amplifiers. These inputs are connected to headers J 19 (external input 1), J20 (external input 2), J25 (external input 3), and J26 (external input 4) on the Output Board. Connections are made via five position screw type barrier strips or RJ-45 connectors that are mounted onto the headers.
When wiring the 5-pin connectors, two conductor shielded cable with a foil shield around each conductor should be used.

These inputs are intended mainly for air signal monitors, or for the connecting of other external monitor sources. Input level trims for each of these inputs are provided on the Analog Output Board.

### 4.1.4 Headphone Outputs

Two headphone outputs are provided. The first is available at a stereo, quarter inch, phone jack which is factory mounted to the front panel. This output is capable of driving 8 ohm or greater loads. DO NOT USE MONO HEADPHONES. The output signal is selected by the front panel headphone or monitor switches and level adjusted by the front panel headphone level control.

The second headphone output is stereo, balanced, and high level (Iv RMS typical). It will drive loads of 2 K ohms or greater. This output, which is intended for connection to an external headphone amplifier, follows the input selection switches but is not affected by the front panel headphone level control.

Connections are made via a five position screw type barrier strip or RJ-45 connectors on Headphone header J11 on the Analog output Board.
Single conductor shielded cable or two conductor shielded cable with a foil shield around both conductors should be used.

### 4.1.5 Monitor Sends

Three stereo, balanced, high level (Iv RMS typical) are provided. Each output will drive loads of 2 K ohms or greater. The outputs are dimmed.

Monitor (controlled by Mute 1), Muted Monitor (controlled by Mute 2), and Unmuted Monitor. All outputs follow the monitor selection switches but only the Dimmed Monitor is affected by the front panel monitor level control. Connections are made via five position screw type barrier strips or RJ-45 connectors that are mounted onto the monitor headers on the Output Board as follows.

Output Board Header Monitor Output
J12 Dimmed Monitor (Mute 1)
J15 Muted Monitor (Mute 2)
J16 Unmuted Monitor

When wiring the 5 -pin connectors, single conductor shielded cable or two conductor shielded cable with a foil shield around both conductors should be used.

All monitor outputs are intended to drive external monitor amplifiers. The Dimmed Output, controlled by Mute 1, (which also mutes the Cue speaker) is intended to feed the control room monitor amplifier where the console is located. When the Mute 1 bus is enabled, the output from the Dimmed Output will be reduced to a level set by VR13 located on the Output Board. This level may be set to maximize (for full muting) or, alternatively, to a level just below the feedback threshold of the speakers.

The Muted Output is intended to feed any other room which that contains microphones connected to the console.

If it is desirable to feed all studios from a common amplifier, this amplifier should be fed from the Unmuted Monitor Output. External relays driven by the muting contacts on header J7 could then be used to provide the necessary muting of the signal.

### 4.2 Digital Output Board

The digital (upper) circuit board provides the following console functions:

$$
\begin{aligned}
& \text { System clocks and crystal } \\
& \text { Digital mixing } \\
& \text { System processor and non-volatile memories } \\
& \text { RS-232 system interface } \\
& \text { Parallel audio bus interface } \\
& \text { Digital line outputs } \\
& \text { Digital utility bus outputs } \\
& \text { Analog utility bus outputs } \\
& 8 \text { position switcher logic processing and interface } \\
& \text { Power supply I/O }
\end{aligned}
$$

### 4.2.1 Digital Program Outputs

All program outputs are simultaneously available in Analog format (on the lower Analog output board) and digital format on the digital output board connectors J6, J14, J22, J27. See illustration O-1 and O-2 for connector locations.


Digital output levels for the PROGRAM.1, PROGRAM. 2 and PROGRAM. 3 buses can be set in console software in . 1 dB steps to a maximum of +4 dB out. Consult the "Output Level" page in the "Software" section of this manual for more information.

### 4.2.2 Digital Utility Outputs

Utility bus outputs are simultaneously available in digital format on the digital output board on connectors J5, J13, J21, J26, and in Analog format on the digital output board on connectors J29, J34, J37, J40. See illustration O1 and O2 for connector locations.

Analog outputs are factory calibrated and set identically to the main output buses (see section 4.5 .1 for details.)
When using utility outputs as STEREO pairs, outputs $1 / 6,2 / 7,3 / 8,4 / 9,5 / 10$ must be used as left/right pairs, because this is how the outputs appear on the output connectors.

> Software Analog and digital output levels for the 10 Utility buses can be set in console software in .1 dB steps to a maximum of +4 dB out. Buses can also be configured to provide a main and alternate mix of any combination of input channels, pre or post channel fader or on/off switch. Consult the "Output Buses" and "Utility Buses" pages in the "Software" section of this manual for more information.

### 4.2.3 RS-232 Connectivity

RJ-45 connectors J20 and J15 provide main and auxiliary RS-232 connectivity for console serial (software) control. See illustration O 1 and O 2 for connector locations.

Consult the "Communications" page in the "Software" section of this manual for main/aux serial port assignment.
Consult the "Serial Comm Port" page in the "Software" section of this manual for PC comm. port assignment.

### 4.2.4 Clock Rate (Digital Sync.)

The console internal sample rate and digital output sample rate (which are always the same) are internally generated and crystal set at a factory default of 44.1 kHz . The rate can be changed by exchanging crystal Y 2 and re-setting jumper JU-10 on the digital output board. Contact the factory to order crystal Y 2 with a different sample rate.

External (house sync) in AES/EBU format can be feed to the console via RJ-45 connector J-28. LED D-9 illuminates to indicate external sync. When external sync is present, the console will default this external reference. If the external sync is removed the console will automatically revert to the internal crystal reference. Consult illustration O-5 or O-6 for connector locations for internal location and pin outs.

### 4.2.5 Eight Position Switcher

Eight accessory switchers are provided on the right hand side of the console upper control panel for optional user control of external equipment, console accessory boards and mix-minus sends. The switches and their associated LED indicators are wired directly to the digital output board and read by the digital processor. Connections for accessory boards and special external switching are then made directly to connectors J39 and J43 on the digital output board. Consult diagrams O1and O2 in the digital output board section for more information.
Consult the "8 Position Switches" page in the "Software" section of this manual for optional switch functionality assignment.

### 4.3 Control Wiring

### 4.3.1 Mute and Timer Reset Bus Connections

A five position quick-connect type barrier strip is connected to Mute/Timer header J7 on the Output Board to provide external mute and timer reset functions. Note that clearance may not exist for this connector to be installed with side wire entry. In this case the connector may be plugged using it's side-entry pins and with the wires entering from the top.

The bus outputs are open collector current sinking outputs, maximum +24 vdc open circuit voltage, 80 ma . If the buses are to drive external relays, install EMF suppression diodes across the relay coils. Do not exceed 150 ma draw from the +15 v supply.
An interface relay is optionally available from Radio Systems. Illustration D3 shows the wiring of this relay for external tally lights.

The Timer Reset Bus activates only during the first 100 ms after a mixing channel, with its Timer Reset Jumper(s) installed, is placed in the "on" mode. Repeated depressing of the "on" switch after the mixing channel has turned "on" will result in additional pulses on the Timer Reset Bus.

### 4.4 Talk Back Connections

The talk back circuit has two sections, send and receive. The send section will output any signal applied to its input when the front panel Talk Back Switch is depressed. Send and receive signals are normally wired to External Cue Bus connector J37. Trim pots on the Analog Output Board (accessible through holes in digital output board) are provided to set the external cue input level and talk back output level.

Talk back connections are made via 2 five position terminal strips, titled "To Talk Back Output" header J36 and "Talk Back Input" header J37 on the Analog output Board.


Under normal applications, the output of a Utility bus configured for pre-fader pre on/off switch is wired to the talk back send input terminal on J37. This is accomplished by wiring the selected Utility bus output channel to terminals $1 \& 2$ of the Talk Back connector.

Talk Back Output connector J36 also contains terminal 4 labeled "CTL", which is pulled low whenever the front panel talk back switch is depressed. This is useful for switching external intercom or control circuits. It may also be used to remote trigger the console front panel Talk Back switch.

Illustration D-4 shows how this configuration would be used to wire two Millenium Consoles for talk back communication utilizing a utility bus and the cue circuit external inputs.

### 4.5 Intercom Kit

The talk back system can also be used to communicate with up to 4 2-way speakers in studios or control rooms that do not have Millenium Consoles. For this application, Radio Systems provides an intercom kit. Consult the Interface Options and Accessories section of this manual for detailed information.

### 4.6 Internal Adjustments and Level Calibration

The following level trim adjustments are available on the Analog Output Board.

1. mix bus output level
2. VU meter " 0 "
3. peak LED trip point
4. input level for external monitor inputs
5. input level for external cue bus input
6. distortion adjustment for all VCAs

The following level trim adjustments are available on the Digital Output Board.

1. Utliity bus analog output level

2. Program buses analog output level trim
3. Program bus digital output levels
4. Utility bus analog output level trim
5. Utility bus digital output levels
6. Utility bus digital output levels

The console was factory calibrated as follows, and will not require recalibration unless alternate levels are desired.

1. With $a+4 \mathrm{dBv}$ input and the fader set to the " 0 " position, the console will provide +4 dBm output into a 600 ohm load. In addition, the VU meters will read 100\% or 0 VU.
2. The peak LED trip point was calibrated to illuminate the LED when the peak output level reaches +2 dBv .
3. The external monitor inputs were calibrated to provide a Iv RMS output with a Iv RMS input.

### 4.6.1 Program Bus Output Level Adjust

The console was calibrated at the factory for an output level of +4 dBv , into 600 ohms, when the VU meters indicate " 0 ".


Software level trims are factory default set for 0 db (no gain or boost.) See the "output level set" page in the software section for more information.

Perform the following steps on the Six Channel Audio Board to verify or change the calibration.

1. Select an Analag Input channel set for line-level gain.
2. Disconnect any inputs to the left or right $A$ input.
3. Connect a $1 \mathrm{kHz},+4 \mathrm{dBv}$, balanced sine signal to both the left and right A inputs.

Select input A, select all mix buses, turn the mixing channel "on", and set the fader to "0".
Perform the following steps on the Output Board.

1. If the console outputs will normally be terminated, place an equivalent termination onto each PROGRAM. 1 and PROGRAM. 2 output. In addition, place a termination onto one of the Mono outputs.
2. Connect a high impedance, balanced voltmeter across the + and - Left program output.
3. Adjust the left channel output level trimmer so that the voltmeter indicates the desired output.
4. Move the voltmeter, and adjust the right PROGRAM. 1 output, followed by the left PROGRAM. 2 output, right PROGRAM. 3 output and PROGRAM. 3 output.

### 4.6.2 VU Meter "0" Calibration

The console was calibrated at the factory for an output level of +4 dBv , into 600 ohms, when the VU meters indicate " 0 ". To calibrate the VU meter "0" indication:

1. Perform output level calibration as detailed previously.
2. Adjust the VU meter calibrate trimmers, located on the Output Board for a " 0 " reading on each meter.

### 4.6.3 Peak LED Trip Point Calibration

The console was calibrated at the factory for an output level of +4 dBv , into 600 ohms, when the VU meters indicate " 0 ", and for a peak LED trip point of +2 VU . To perform Peak LED Trip Point Calibration:

1. Perform output level calibration as detailed previously.
2. Perform VU meter " 0 " calibration as detailed previously.
3. Adjust oscillator to the desired peak LED trip point level (typically 0 to 3 dB hotter).
4. Adjust the peak LED trip point trimmers to that the LEDs just illuminate.

Note: Six channel consoles share the same meters for PROGRAM. 1 and PROGRAM. 2 monitoring. The front panel VU meter switch selects the signal to be displayed. Adjustment must be made with both switch settings.

### 4.6.4 External Monitor Input Level

There is a separate adjustment, located on the Output Board for each of the four stereo external inputs.

1. Connect a high impedance voltmeter to the unmuted monitor output.
2. Select a high level input, and reproduce the nominal level from a test tape, record or CD.
3. Turn the mixing channel "on", select the program mix bus, and adjust the fader for " 0 " VU.
4. Depress the "program" monitor input switch.
5. Note the reading on the voltmeter.
6. Feed the nominal input level to any external input and select that monitor input switch.
7. Adjust the associated external input level trimmer until the voltmeter gives the same indication as in step 5 .
8. Repeat steps 6 and 7 for all external inputs.

### 4.6.5 Cue Bus External Input Level

The level adjustment for the external cue buss input is located on the Output Board.

1. Connect a high impedance voltmeter to the external cue speaker terminals.
2. Select a high level input, and reproduce the nominal level from a test tape, record or CD.
3. Place the mixing channel into "cue", and adjust the cue level control VR2 for normal listening level.
4. Note the reading on the voltmeter.
5. Feed the nominal input level into the external cue input.
6. Adjust the external cue input level trimmer until the voltmeter gives the same indication as in step 4.

## Illustration D-1 <br> Analog Output and Meter Board 5-Pin Connector Version p/n 14800B

## Description

This board provides all main bus analog audio outputs, external inputs, muting and talk-back and monitor sends. The board utilizes exclusively 5 -pin removable barrier strip connectors for all audio I/O.
The board mounts on the console inside lower right, underneath the digital output board.

| Connectors |  |
| :---: | :---: |
| J1 | to Talk Back Control |
| J2 | to Power Supply Out |
| J3 | to Timer |
| J4 | to Cue Speaker |
| J5 | to Power Supply In |
| J6 | to Power Supply In (2) |
| J7 | to Muting \& Timer Reset |
| J8 | to Power Supply In |
| J9 | to Monitor Selector Boar |
| J10 | to Headphone Jack |
| J11 | Ext. Phones |
| J12 | Monitor Send (Mute 1) |
| J15 | Monitor Send (Mute 2) |
| J16 | Monitor Send (Unmuted) |
| J19 | Ext. Input 1 |
| J20 | Ext. Input 2 |
| J23 | to Meters |
| J24 | to Peak LED's |
| J25 | Ext. Input 3 |
| J26 | Ext. Input 4 |
| J29 | PROGRAM. 2 Output |
| J30 | PROGRAM. 1 Output |
| J33 | PROGRAM. 3 Output |
| J34 | to Audio Ground Buss |
| J36 | Talk-Back Output |
| J37 | Cue/Talk-Back Input |
|  | to Mix Busses |



Connectors


Mute/ Timing


PGM. 2 Output


Monitors/
Ext. Headphones


J11/J12/J15/J16

PGM. 3 Outputs


External Inputs 1, 2, 3, 4


J19/J20J25/J26
*The support bracket for the upper DIGTIAL output board may prohibit plugging into J 7 as illustrated. Plugging in this connector on its side (with wire entry holes pointed up) will allow installation.

## Trim Pots

VR7 Ext. Monitor Input 1 R VR8 Ext. Monitor Input 1 L VR9 Ext. Monitor Input 2 R VR10 Ext. Monitor Input 2 L VR11 Ext. Monitor Input 3 R VR12 Ext. Monitor Input 3 L VR13 Mute 1 Dimming VR14 Ext. Monitor Input 4 R VR15 Ext. Monitor Input 4 L VR16 Peak LED Program R VR17 Peak LED Program L VR18 Peak LED Audition R VR19 Peak LED Audition L VR20 Peak LED Mono VR21 PROGRAM. 1 Out L Level Set VR22 PROGRAM. 1 Out R Level Set VR23 PROGRAM. 2 Out L Level Set VR24 PROGRAM. 2 Out R Level Set VR25 Mono Out L Level Set VR26 Talk Back Level Set VR27 Meter Cal - Program L VR28 Meter Cal - Program R VR29 Meter Cal - Audition L VR30 Meter Cal - Audition R VR31 Meter Cal - Mono

W1 Jumper installed for digital use

Note- Access trim pots via silk-screen legend holes on the upper DIGITAL output board with the provided small screw driver.


## Illustration D-2 <br> Analog Output and Meter Board RJ-45 Connector Version p/n 15354B

## Description

This board provides all main bus analog audio outputs, external inputs, muting and talk-back and monitor sends. The board utilizes exclusively RJ-45 connectors with StudioHub+ standard pin-outs for all analog and digital audio I/O The board mounts on the console inside lower right, underneath the digital output board.


Note: Access trim via silk-screen legend holes on the upper DIGITAL output board with a small

## Connectors



PGM. 2 Output


Talk Back Out


PGM. 3 Outputs


Talk Back In/Cue

*The support bracket for the upper DIGITAL output board may obscure plugging into J 7 as illustrated. Plugging in this connector on its side (with wire entry holes pointed up) will ease installation.

Monitors/
Ext. Headphones


External
Inputs 1, 2, 3, 4


J19/J20J25/J26


Access trim pots via silk-screen legend holes on the upper DIGITAL output board with the provided small screw driver.

Illustration D-3
DIGITAL OUTPUT AND PROCESSOR BOARD RJ-45 CONNECTOR VERSION P/N 16787

## Description

This board provides all main bus DIGITAL audio outputs, analog and DIGITAL utility bus outputs,
RS232, power supply, parallel channel data and GPI connectivity
The board utilizes exclusively RJ-45 connectors in StudioHub+ pin-out format for all I/O.
The board mounts on the console inside lower right, underneath the DIGITAL output board.


| Power Supply Connector Pin-Outs and Voltages |  |
| :---: | :---: |
| 1234 | 12345678910 |
| $\mathrm{J} 4 \stackrel{\square \bullet \bullet \bullet}{ }$ | J3 |
|  |  |

Note: Pin outs provided for custom eight position switcher applications.
Factory cables are provided for four source switcher and squawk box options cards.
$\begin{aligned} & \text { fwatory cables are provided for four source suit } \\ & \text { Swe open collector/pull-to-ground. }\end{aligned}$

## CARD CONNECTIONS \& SETTINGS

| RS-232 Main \& Aux |  |  |  | External Clock |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Function | Color Pair | $\begin{aligned} & \hline \text { RJ-45 } \\ & \text { Pins } \end{aligned}$ | $\begin{aligned} & \text { Com Port } \\ & \text { "D" } \end{aligned}$ | Channel | Color Pair | $\begin{aligned} & \hline \text { RJ-45 } \\ & \text { Pins } \\ & \hline \end{aligned}$ |
| Ground | Blu/Wht | 4 | 5 | Data+ | Wht/Org | 1 |
| Receive | Wht/Blu | 5 | 3 | Data - | Org/Wht | 2 |
| Transmit | Grn/Wht | 6 | 2 |  |  |  |
| Note: Conne establish so pin D to RJ-4 | Emmuni |  | $\begin{aligned} & \text { in RS232 to } \\ & m \text { port } 9 \\ & 3299 \text {. } \end{aligned}$ | format. S input wh | faults t sent. | (black) <br> al |

## CONSOLE SAMPLE RATE

|  |  |  |
| :---: | :---: | :---: |
| 48 kHz | 44.1 kHz | 32 kHz |
| JU10 | jU10 | JU10 |
| A! | A |  |
| B | A |  |
| B | B | B |
| No | B | A |
| Jumper | Jumper | Jumper |

Note: A factory supplied crystal (Y2) on the sample frequency must be utilized together with JU10 settings. Sample Rate sets internal console rate as well as II DIGTAL output rates.Factory

OUTPUT GROUNDING JUMPERS
$\underset{\text { CBD }}{\text { Cod }}$ JU1 - JU12
Jumper Setting
For Circuit Ground

> ©0D JU1 - JU12 Jumper Setting For Chassis Ground
(See Manual
for Grounding Information)

| StudioHub+ Pinout Chart |  |  |
| :---: | :---: | :---: |
| Channel | Color Pair | RJ-45 Pins |
| L+/AES + | Wht/Org | 1 |
| L-/ AES- | Org/Wht | 2 |
| R+ | Wht/Grn | 3 |
| R- | Grn/Wht | 6 |
| nc | Wht/Blu | 5 |
| GND | Blu/Wht | 4 |
| 15 V - | Wht/Brn | 7 |
| ${ }^{15 \mathrm{~V}+}$ | Brn/Wht | 8 |
| Shield | Wht/SIt | Shield |
| Shield | Slt/Wht | Shield |

PHANTOM POWER JUMPER
$\qquad$
Insert jumper between pins $4 \& 5$ to activate phantom
power on plug-in power on plug-in
analog input cards.
(Note: JU-12 must also be inserted on the analog input
cards to activate phanton power on that card)


Illustration D-4
DIGITAL OUTPUT AND PROCESSOR BOARD
5-PIN CONNECTOR VERSION P/N 16786

Description
This board provides all main bus DIGITAL audio outputs, analog and DIGITAL utility bus outputs, RS232, power supply, parallel channel data and GPI connectivity.
he board
The board mounts on the console inside lower right, underneath the DIGITAL output board.

## CARD CONNECTIONS \& SETTINGS

## AUDIO OUTPUTS

| Balanced Analog | Unbalanced Analog |
| :---: | :---: |
| $\mathrm{R}+\bullet$ - 5 | $\mathrm{R}+\cdot \mathrm{O}$ |
| R- - (1) 4 | S - ${ }^{\text {- }} 4$ |
| G - 3 | G - $\bigcirc 3$ |
| L- $-\bigcirc$ | S - ${ }^{\text {d }}$ |
| L+ - ¢ 1 | L+ $\bullet$ • 1 |
| J29, J34, J37, J40 | J29, J34, J37, J40 |
| Balanced Stereo | Connect hot lead |
| Analog Audio | to L+ and shield |
| Connections | to neg. and ground | Balanced Digita//

Unbalanced Digital
 J21, J22, J26, J27
Connect balanced Connect balanced S-P/DIF unbalanced output to + and ground


OUTPUT GROUNDING JUMPERS
CONSOLE SAMPLE RATE

| CB JU1 - JU12 |  |  |  |
| :---: | :---: | :---: | :---: |
| CB | 48 kHz | 44.1 kHz | 32 kHz |
| Jumper Setting | JU10 | JU10 | JU10 |
| For Circuit Ground | A | A | A |
| CH JU1 - JU12 | B | B | B |
| Cumper Setting | No | B | A |
| For Chassis Ground | Jumper | Jumper | Jumper |
|  |  |  |  |

Note: A factory supplied crystal (Y2) on the sample frequency must be utilized together with JU10 settings. Sample Rate sets internal console rate as well as all DIGITAL output rates. Factory default sample rate is 44.1 kHz
Insert jumpers between pins 4 \& 5 to activate +15 v phantom power on plugin analog cards
Note: an option board is required to provide +48v phantom power. Order RS part \# 16798 apply power to connector $J 7$.
Note. JU-12 must also be inserted
Note: JU- 12 must also be inserted
on the analog input cards to activate
phantom power on the card


RJ-45 DATA CONNECTIVITY

| RS-232 Main \& Aux |  |  |  | External Clock |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Function | $\begin{aligned} & \text { Color } \\ & \text { Pair } \end{aligned}$ | $\begin{aligned} & \hline \text { RJ-45 } \\ & \text { Pins } \end{aligned}$ | $\begin{aligned} & \text { Com Port } \\ & \text { "D" } \end{aligned}$ | Channel | Color Pair | $\begin{aligned} & \hline \text { RJ-45 } \\ & \text { Pins } \end{aligned}$ |
| Ground | Blu/Wht | 4 | 5 | Data+ | Wht/Org | 1 |
| Receive | Wht/Blu | 5 | 3 | Data - | Org/Wht | 2 |
| Transmit | Grn/Wht | 6 | 2 |  |  |  |
| Note: Connect PC com port to console main RS232 to establish software communication. Use com port 9 pin D to RJ-45 adapter provided (RS p/n 15329). |  |  |  | Note: Data must be in AES/EBU (black) format. Sync defaults to external input when present. |  |  |

## Illustration D-5 Auxiliary Control Relay Wiring

Connect the auxiliary relay (optional) (RS Part \#7699) to the console muting connector J7 on the analog output board for mute-1 or mute-2 control of air lights and other outboard equipment
A solid-state model of this relay (RS Part \#9375) is also available. Note that this part is only supplied single pole (SPST) configuration.
IMPORTANT NOTE: Take extreme care in wiring this relay to console connectors J 7 to ensure that no hazardous (110V) voltage is applied to pins on this connector.


[^1]
## Illustration D-6 <br> Talkback Wiring

 Millenium Digital Console \#2


## Illustration E-1 Enhanced Remote Interface Card

## Description

This option card connects to any input channels 15-pin remote connector to provide relay and opto isolated channel on/off and start/stop control.

Jumpers are also provided to program various enhanced logic states.


## Remote Wiring Notes

(1) Connect and hold "cough" and +15 v pins to hold the channel off.
(2) Apply from $+5 v$ to $24 v$ DC to these leads to illuminate the channel off lamp.
(3) These leads go low to indicate channel on or off state.
(4) Apply from $5 v$ to $24 v$ DC these leads to turn the channel on or off.
(5) Relays pulse or hold close when channel turns on or off.

## Programming Notes

A/B jumpers - short upper 2 pins for input B control, or short lower 2 pins for input A control of associated function.

Lead/lag jumpers - short upper 2 pins for leading control, or short lower 2 pins for lagging control of remote channel On or Off control.

Denon CD Players - insert these 3 jumpers to adjust card timing pulses to utilize in conjunction with Denon model 950FA CD cart machines.

## Installation Notes

When ordered with the console, this optional board will normally be factory installed and operational. For field installation, use the four plastic standoffs provided to mount the board on the inside rear console wall near the associated input and output. Use the cable provided to wire the Remote Board(s) to the desired console channel remote control D connector via on-board connector J-2.

## Illustration E-2 Four Source Router Card

This optional card is a $4 \times 2$ balanced stereo router which can be used bi-directionally. That is, the board can be used to route 4 balanced stereo sources to one stereo input, or direct one stereo output to any one of four stereo inputs.

Because all switching is via relay contacts (passive), multiple router boards can be "daisy chained" by connecting the router outputs in parallel to create an $8 \times 2$ (or larger) matrix.

The four source router board is designed to be controlled by the Radio Systems selector logic board, which interfaces one or two 4 source router boards to the Millenium console front panel selector switches.

To DIGITAL output board Status Output Connectors

Connector to J-39 for switches 1 to 4

Connect to J-43 for switches 5 to 8

|  | $1-\operatorname{Left}(+)$ |
| :--- | :--- |
| $1-\operatorname{Left}(-)$ |  |
|  | Ground |
| $1-\operatorname{Right}(-)$ |  |
|  | $1-\operatorname{Right}(+)$ |
|  | $2-\operatorname{Left}(+)$ |
|  | $2-\operatorname{Left}(-)$ |
|  | Ground |
| $2-\operatorname{Right}(-)$ |  |
|  | $2-\operatorname{Right}(+)$ |



Right (+)
Right (-)
Ground Outputs
Left (-)
Left (+)

4 - Right (+)
4 - Right (-)
Ground
4 - Left (-)
4 - Left (+)
3 - Right (+) Inputs
3 - Right (-)
Ground
3 - Left (-)
3 - Left (+)

## Installation Notes

When ordered with the console, this optional board will normally be factory installed and operational. For field installation, use the four plastic standoffs provided to mount the board on the inside rear console wall near the associated input or output.

Two cards may be installed as above independently and used as two $4 \times 2$ routers, or used in tandem to create a $8 \times 2$ router by connecting the outputs in parallel.

## Illustration E-3 DA Mixer Card

## Description

This optional, compact circuit card installs internally in Millenium consoles and may be connected to any console audio output(s) to distribute signal to multiple sources. The card features bridging inputs, low impedance outputs, and independent level adjusts for each output.

## Installation

Use the plastic pins supplied to mount the circuit card on any free slot on the console inside rear wall. Supply DC power via the three wire cable from any auxiliary DC output connector on any lower console circuit board. The second DC connecter can be used to supply DC to power additional console option boards.

## Applications

Use the DA/MIXER to distribute program or audition audio, create a mono program blend or a "mix-minus" feed of multiple signals. On analog Millenium consoles, the DA/MIXER may also be wired to loop through channel patch points (while leaving the loop-through jumpers in place) to "pick-off" and distribute individual channel audio. The DA/MIXER, used in this application, will balance and buffer the audio, maintaining the integrity of channel audio as it exits the console.

Each of the 8 outputs can be jumper programmed to deliver one or any mix of the 4 inputs. Thereby, multiple stereo outputs can be created by jumpering one input to multiple outputs. A mono mix of stereo inputs can be created by jumpering a signal output to multiple inputs. A "mix-minus" output can be created by jumpering one input to multiple outputs with additional inputs to the same outputs.


When ordered with the console, this optional board will normally be factory installed and operational. For field installation, use the four plastic standoffs provided to mount the board on the inside rear console wall near the associated input or output. Connect the 3-pin power connector to any available 3-pin power port (+/-15v DC \& Ground), on any lower console circuit board.

# Illustration E-4 DA Mixer Card Programming Examples 



Output Programming Jumpers JU1-JU8
(black over pin 1 indicates user installed jumper)


Stereo DA-1x4
Single stereo input (1/2) to 4 stereo outputs (A/B, C/D, E/F, G/H)


Out C


Dual Stereo DA - 2x2
Dual stereo input (1/2)+(3/4) each to 2 stereo outputs (A/B, C/D)+(E/F, G/H)


Mono 8 Output DA - 1x8
One mono input (1) to 8 mono outputs (A.B.C.D.E.F.G.H)


Stereo Summing 8 Output DA - 2x8
One stereo input summed to 8 mono outputs


Stereo DA - 1x2 / Mono DA - 1x4
One stereo input ( $1 / 2$ ) to 2 stereo outputs (A/B,C/D) and one stereo input (3/4) mixed to 4 mono outputs ( $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$ )


Stereo Program with 2 Summed Mix-Minus outputs - $1 \times 2$ with 3 Mix-Minus
One stereo input ( $1 / 2$ ) to 2 DA outputs (A/B,C/D) plus two mix-1 outs ( $\mathrm{E}, \mathrm{F}$ ) and two mix-2 outs ( $\mathrm{G}, \mathrm{H}$ )


Mono Program with 3 Mix-Minus Outputs $\mathbf{- 1}$ with 4 Mix-Minus
One mono input (1) to 2 DA outputs (A,B) plus three sets of mix-1, mix-2, and mix-3 outputs (C,D/E,F/G,H)

## Illustration E-5 Intercom Wiring Card

To Interconnect the Intercom Card to Radio Systems' Millenium Analog Consoles


## Wiring

1. Connect utility output (typically with operators mic prefader/pre on-off assigned) (or other line level source) to output board talk-back input (J37 pins 1 \& 2).
2. Connect provided patch cables from intercom card to output board (control cable from intercom card J1 to console connector J 1 and the audio cable from intercom card J 2 to console conenctors J 36 \& J37).
3. Connect up to four table-top speakers to terminals labeled "table-top speaker hot" and "table-top speaker switched" (1-4). Use shielded cable. Consult interconnection diagram on next page for hook-up. Select table-top speaker on console selector buttons for hands-free mode. Table-top speakers can "call" the console via call button.
4. Connect up to four console intercoms to terminals labeled "console intercom +" and "console intercom -".

Consoles must select each other to establish a push-to-talk pathway.
5. Maximum of four stations "any combination of table-top and console" may be connected.
6. Set VR2 for Intercom output level and set VR26 for Intercom input level

## Installation

When ordered with the console, this optional board normally will be factory-installed.
For field installation, use the four plastic stand-offs provided to mount the board on the inside rear console wall near the associated input and output and wire it to the output board with the two (supplied) harness cables.

## Illustration E-6 Intercom Card Table-Top Speaker \& Console Interconnection



Note:
Use shielded cable when making connections.
Be certain to perform J-1 thru J-4 programming to set table-top or console operation.

Connect up to four table-top or console intercoms in any combination. (Only one of each can be connect to any channel)

### 5.1 Description - Overview

The Intercom is an optional accessory for the Millenium digital broadcast consoles. The card provides 2-way amplification for connection of the console to any combination of four speakers or Radio Systems' consoles. One or two cards may be installed in a console to service four or eight stations.

### 5.2 Operation

## With a table top speaker (Radio Systems Part \#7696)

To page and speak from the speaker to the console, push and hold the button on the speaker.
To respond to or call the speaker from the console, select the speaker location on the console 4/8 position selector and push and hold the talkback button.
Release the talkback button to allow the speaker location to respond hands free.
Deselect the speaker location on the $4 / 8$ position selector to hush the listen path.

## Between two consoles

Select the console you wish to communicate with on the $4 / 8$ position selector.
Push and hold the talkback button to page and speak to the selected console.
To respond, the selected console must select the paging console on the $4 / 8$ position selector, (if it is also equipped with a intercom card) and push and hold the talkback button.
Push-to-talk conversation may continue between the consoles. Console operators should deselect the console on the $4 / 8$ position selector when the conversation is complete.

### 5.3 Installation and Wiring

Use the plastic stand offs provided to mount the intercom card and the logic selector card (required and utilized only in Millenium consoles) next to each other on the inside back wall of the console behind the output board.

### 5.3.1 Control Wiring

Install the control cable(s) provided between digital output board connector J39 for switches
1-4 and J43 for switches 5-8 and monitor board D connector J1 and intercom control connector.
The eight position switcher must be programmed for interlocked operation. See the "eight position switcher" page in the software section for more information.

### 5.3.2 Intercom card audio wiring

Connect the 3-conductor control cable provided between intercom card connector J1 and analog output card connector J1. Connect the 4-conductor audio cable between intercom card connector J2 and output board Talk-Back audio connectors J 36 \& J 37 . (For RS Series consoles only - connect J 4 to the 4 -position front panel mechanical switch.)

### 5.3.2.1 Console internal wiring

Designate and wire a console Utility bus output to the intercom talk-back input (connector J37 pins 1, 2, 3). Consult the software section page "Utility Bus" for instructions to configure this bus for operator microphone, pre on/off and prefader feed.

### 5.3.2.2 Table-top speaker wiring

Utilize up to 300' of 2-conductor shielded cable. At the intercom card, connect the shield to GRND, the tip from the phone plug (switch output) to call, and the ring to the other side of the call switch.

### 5.3.2.3 Console interconnection

Interconnect the SPKR, GRND and AUX in pins from the appropriate intercom card outputs on the two consoles, or to talk-back Audio Connectors J36 \& J37 on consoles with no intercom board.

### 5.4 Calibration

Adjust the output level control on the intercom card for more level at the remote speakers or console.
Adjust the external cue level control on the analog output board to set the intercom input level and to balance it with the cue level of the internal console cue inputs.

## Using Active Balanced Circuitry

Balanced lines have been used for many years and are in continuing use today because of their immunity to stray pickup. Induced signals appear on both sides of the balanced line. The receiving end of the balanced line responds only to the difference voltage between the lines which is the desired signal. Induced signals are common to both and are balanced out.

Transformers have been the mainstay of balanced circuitry for decades. Unfortunately, transformers cause distortion and ringing, and are susceptible to magnetic flux pickup. Further, good quality audio transformers are very expensive.

The use of op-amp balanced circuitry has the advantage of transformers without the disadvantages. The only caveat is that careful wiring practices are more important with active balanced than with transformers.

Active balanced outputs and inputs use three wires:,+- , and ground. The + and - terminals are both driven and neither should ever be connected to ground. For best performance, a three-conductor shielded wire should be used. The third wire completes the ground circuit. The shield should be connected to the ground at one end of the wire only.
If a two-wire shielded cable is used, it is important that a ground connection be made between the sending and receiving units. A ground circuit through equipment chassis or through three-prong AC cord ground is also acceptable.

Single-ended audio interconnections lack the interference immunity of balanced hook-ups. For the reason, keep unbalanced connections short, direct, and well separated from AC power wires. To drive a single-ended load from an active balanced source, use coaxial wire: + to center conductor and ground to shield, leaving the - output unconnected. To feed an active balanced input from a single-ended source, use coaxial wire, connecting the hot center conductor to + . Connect the shield to ground and put a jumper from ground to -.

When driving an active balanced input from a transformer balanced floating source, use two conductor shielded wire. Ground the shield at the source end. Establish good ground between the chassis either directly or though AC plug ground prongs. At the load, connect the + lead to the + input and the - lead to the - input. Put two 300 ohm resistors in series between the + input and the - input and connect their mid-point to the load ground. This correctly terminates the source output transformer for optimum frequency and transient response (freedom from ringing) and provides a low impedance return path for leakage and induced hum. If more than one active balanced load is to be placed across a floating balanced transformer source, install this resistive termination once only. From that location to the active balanced loads, run three-conductor shielded wire, shield continued from the sources chassis, + from,+- from -, and ground from the mid-point of the terminating resistors.
To drive a balanced floating transformer load from an active balanced source, use shielded wire. Connect the shield to source ground and leave the shield open at the load end. Connect + to + and - to - , and establish a good source ground to load chassis connection, either through a third wire in the interconnect cable or through chassis contact or AC cord third wire ground.

Interconnections between pieces of stereo equipment require doubling the connections described above without duplicating the ground connection. Between pieces of active balanced stereo equipment, then, 5 shielded conductors should be run.

When testing active balanced equipment with single ended test equipment, do not connect the - to test equipment ground. Most modern test equipment provides balanced inputs. In many dual-trace oscilloscopes, balanced signals may be displayed by running the two inputs in the "add" mode with one input switched to invert. To perform a test with single-ended equipment, + and - outputs must be tested independently and their results added. Testing only a single output results in a 6 db loss in output level.

The active balanced equipment interconnection format makes possible state of the art fidelity. Careful attention to detail and conservative practice will be rewarded with outstanding flat frequency response, low distortion, and wide dynamic range.

3
$\qquad$







## SIX CHANNEL CONTROL BOARD PARTS LIST

RS
Part \#
18517
18518
15505
16655


16512
16717
18519
16626
7052
18571
16904
16011

| Manufacturer Part \# | Reference Description | Value | Manufacturer | Descrip. | Qty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CD74HC08PW | $\begin{aligned} & \text { U1,3,9,10,14,15, } \\ & 19,20,24,25,29,30 \end{aligned}$ | 74HC08 | TI | QUAD 2-INPUT POS-AND GATE | 12 |
| SN74HC157PW | U4, $8,13,18,23,28$ | 74HC157 | TI | QUAD 2-TO-1-LINE DATA SELECTOR/MULTIPLEXER | 6 |
| ECJ-2YB1H104 K | $\begin{aligned} & \text { C1-3 C5-7,C11-14,17, } \\ & \text { 18,C20-23,C26-27,29, } \\ & \text { C30-32,35,36,38,39, } \\ & \text { 40,41,44,45,47,48,49, } \\ & 50,53,54 \end{aligned}$ | .1UF | PANASONIC | SURFACE MOUNT CAPACITOR 0.048 X 0.079 INCHES | 36 |
| ICF-314-T-O | J25 |  | SAMTEC | 14 PIN SMT DIP SOCKET | 1 |
| ICF-316-T-O | J2,8,12,16,20,24 |  | SAMTEC | 16 PIN SMT DIP SOCKET | 6 |
| EEV-FK1V100U R | C4,15,24,33,42,51 | 10UF | PANASONIC | CAP SURFACE MOUNT POLAR VS-B | 6 |
| EEE-FK1E101X P | $\begin{aligned} & \text { C8-9 ,10,16,19,25,28, } \\ & 34,37,43,46,52 \end{aligned}$ | 100UF | PANASONIC | CAP SURFACE MOUNT POLAR VS-D | 12 |
| DNP-15STCC-G-F1 | J4,5,9,13,17,21 |  | KELTRON | 15 PIN D CONNECTOR | 6 |
| MMSD4148T1G | $\begin{aligned} & \text { D1-6 D10 D13 D19,D25-30, } \\ & \text { D33,34,38,49, D50-54,57,58,62, } \\ & \text { D73-78,81,82,86,97, D98-102,105, } \\ & \text { 106,110,D121-126,129,130,134 } \end{aligned}$ |  | ON SEMICONDUCTOR | SWITCHING DIODE | 54 |
| MMSZ5234BT1 | D20,36,60,84,108,132 | 6.2 V 1 W | ON SEMICONDUCTOR | ZENER DIODE 6.2V 1W | 6 |
| MRA4005-T1 | $\begin{aligned} & \text { D11,17,31,35,55,59,79, } \\ & 83,103,107,127,131 \end{aligned}$ | MRA4005 | ON SEMICONDUCTOR | DIODE | 12 |
| SMAZ7V5 | D18,32,56,80,104,128 | SMAZ7V5 | MCC | ZENER DIODE 1W | 66 |
| B340LA-13 | D12,37,61,85,109,133 | B340LA-13 | Diodes Inc | Schotty Rectifier B340LA | 6 |
| AMP-640456-5 | J3,6,10,14,18,22 |  | Amp | 5 PIN MTD HEADER | 6 |
| TSM-106-01-T-DV-P-TR | $\begin{aligned} & \mathrm{JU} 1 / 2,3 / 4,5 / 6,16 / 12, \\ & 13 / 14,11 / 15,26 / 22,23 / 24,21 / 25, \\ & 36 / 32,33 / 34,31 / 35,46 / 42, \\ & 43 / 44,41 / 45,56 / 52,53 / 54,51 / 55 \end{aligned}$ |  | SAMTEC | HEADER 6 PIN (2 X 3) | 18 |
| TSM-103-01-T-DV-P-TR | JU1,7,11,15,19,23 |  | SAMTEC | HEADER 6 PIN <br> (2 ROWS x 3) SMD | 6 |
| 23-21B/T1D-APQHY/A | $\begin{aligned} & \text { D7-9 D14-16 D23-24,33,39, } \\ & \text { D40-43,D47-48 D63-67,71,72, } \\ & \text { D87-91,95,96,D111-115,119,120 } \\ & \text { D135-139,143,144 } \end{aligned}$ |  | EVERLIGHT | LED SMT REVERSE MOUNT WHITE | 42 |
| 23-21B/Y2C-AN1P2/2A | D16,21,22,D44-46,D68-70,D92-94, D116-118,D140-142 |  | EVERLIGHT | LED SMT REVERSE MOUNT AMBER | 18 |
| LM2940S-5.0 | U5,7,12,17,22,27 | $+5 \mathrm{~V}$ | NATIONAL SEMI | POS VOLT REG | 6 |
| MUN5314DW1 | $\begin{aligned} & \text { Q8,11,12,15,Q17-19,Q36-42, } \\ & \text { Q57-63 Q78-84,Q99-105,Q120-126 } \end{aligned}$ | MUN5314 | ON SEMI | COMPLEMENTARY NPN PNP PAIR | 42 |
| PIC16F1914 I/PT | U2,6,11,16,21,26 | PIC16F1914 | MICROCHIP | FLASH MICROCONTROLLER 32MHZ | 6 |

## SIX CHANNEL CONTROL BOARD PARTS LIST

| RS <br> Part \# | Manufacturer Part \# | Reference Description | Value | Manufacturer | Descrip. | Qty |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16575 | RC0805FR-071OKL | R1,R3-9,14, 15,17,23,27-32,34-39, 41,42,44,51,54,74,79-104,108,557, 56,64,69,72,73,78,128,133-158,162, $110,111,118,123,126,127,132,172$, 177,180,182,187-212,164-165,181, 186,236,241-266,218,219,226,231, 234-235, 240,270,290,295-320,273, 280,285,288,324,289,294 | 10K | YAGEO | SURFACE MOUNT RESISTOR 0.048 | 210 |
| 16019 | RC0805FR-071 KL | $\begin{aligned} & \text { R45-47,65,66,75,119,120,129,173, } \\ & 174,183,227,228,237,281,282,291 \end{aligned}$ | 10K | YAGEO | SURFACE MOUNT RESISTOR 0.048 X 0.079 INCHES | 18 |
| 17022 | ERJ-6ENF2211 | R48,107,161,215,269,323 | 2.21 K | PANASONIC | SURFACE MOUNT RESISTOR 0.048 X 0.079 INCHES | 6 |
| 16023 | RC0805FR-073 57RL | $\begin{aligned} & \text { R2,58,112,166,220,274,12,59,113, } \\ & \text { 167,221, 275,26,60,114,168,222, } \\ & 276,33,61,115,169,223,277,40,62, \\ & 116,170,224,278,43,63 \end{aligned}$ | 357 | YAGEO | SURFACE MOUNT RESISTOR 0.048 X 0.079 INCHES | 36 |
| 14667 | RC0805FR-074 K7L | $\begin{aligned} & \mathrm{R} 13,105,159,213,267,321,24,25, \\ & 71,76,125,130,179,184,233, \\ & 238,287,292 \end{aligned}$ | 4.7K | YAGEO | SURFACE MOUNT RESISTOR 0.048 X 0.079 INCHES | 18 |
| 16041 | RC0805FR-074 22RL | $\begin{aligned} & \text { R49,50,68,77,122,131,176,185, } \\ & 230,239,284,293,52,53,67,106 \\ & 121,160,175,214,229,268,283,322 \end{aligned}$ | 422 | YAGEO | SURFACE MOUNT RESISTOR 0.048 X 0.079 INCHES | 24 |
| 16916 | RC0805FR-074 7K5L | R10,70,124,178,232,286 | 47.5K | YAGEO | SURFACE MOUNT RESISTOR 0.048 X 0.079 INCHES | 6 |
| 14468 | ERJ-6GEYR00 | R16,55,109,163,217,271 | DNP | PANASONIC | SURFACE MOUNT RESISTOR 0.048 X 0.079 INCHES | 6 |
| 16025 | ZXMN6A07FTA | $\begin{aligned} & \text { Q1-7,14,16,9,10,13,20-35,43-56, } \\ & 64-77,85-98,106-119 \end{aligned}$ | 8MM | Zetex | N TYPE MOSFET | 84 |




| F-7 | SYSTEMS <br> Logan Township, N | TITLE: <br> MONITOR BOARD |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | TYPE: PARTS LAYOUT |  |  |
|  | RS-D CONSOLE | $\begin{aligned} & \text { DATE: } \\ & 9-1-2007 \end{aligned}$ | $\begin{aligned} & \hline \text { PART NO: } \\ & 15277 \end{aligned}$ | $\begin{array}{r} \text { REV: } \\ \mathrm{A} \end{array}$ |




## MONITOR BOARD PARTS LIST

| LINE | PART \# | DESCRIPTION | QTY. |
| :---: | :---: | :---: | :---: |
|  |  | REFERENCE DESIGNATION |  |
| 3 | 10886 | PCBMONITOR BD | 1 |
| 20 | 7602 | SHOULDERWASHER FOR TO\&20 | 25 |
| 30 | 5744 | CAP 100UF 25V RAD 20\% | 5 |
|  |  | Ref: C1;C2;C8;C9;C10 |  |
| 40 | 5743 | CAP.1UF FILM | 3 |
|  |  | Ref: C3;C6;C7 |  |
| 50 | 9124 | CAP 100 PF SILVER MICA | 1 |
|  |  | Ref: C4 |  |
| 60 | 8191 | CAP 10UF 35V ELEC | 1 |
|  |  | Ref: C5 |  |
| 70 | 15831 | 3MM WHITE LED HI BRIGHTNESS | 25 |
|  |  | Ref: D1;D2;D3;D4;D5;D6;D7;D8;D9;D10;D11;D12;D13;D14; |  |
|  |  | D15;D16;D17;D18;D19;D20;D21;D22;D23;D24;D25 |  |
| 80 | 7012 | DIODE1N4005 | 1 |
|  |  | Ref: D26 |  |
| 90 | 7786 | DIODE1N4735A | 1 |
|  |  | Ref: D27 |  |
| 100 | 1012 | DIODE1N4148 | 7 |
|  |  | Ref: D28;D29;D30;D31;D32;D33;D34 |  |
| 110 | 10928 | 15 PIN D®UUB PC MT STRAIGHT | 2 |
|  |  | Ref: J1;J2 |  |
| 120 | 5890 | HEADER7 PIN MTA . 1 | 1 |
|  |  | Ref: J3 |  |
| 130 | 11157 | RESISTORNETWORK DIP 680 OHMS | 1 |
|  |  | Ref: J5 |  |
| 140 | 5892 | HEADER3 PIN MTA . 1 | 3 |
|  |  | Ref: J6;J7;J8 |  |
| 150 | 7050 | HEADER2 PIN MTA . 1 | 2 |
|  |  | Ref: J9;J10 |  |
| 160 | 10328 | TRANSISTOR2N7000 | 9 |
|  |  | Ref: Q1;Q2;Q3;Q4;Q5;Q6;Q7;Q8;Q9 |  |
| 170 | 10326 | RES NETWORK 10K | 3 |
|  |  | Ref: R1;R2;R3 |  |
| 180 | 5872 | RES 1.0K 1/4W 1\% | 3 |
|  |  | Ref: R22;R24;R26 |  |
| 190 | 1143 | RES 100 OHM 1/4W 1\% | 3 |
|  |  | Ref: R23;R25;R27 |  |
| 200 | 7514 | RES 3.32K 1/4W 1\% | 1 |
|  |  | Ref: R4 |  |
| 210 | 7533 | RES 220 OHM 1/4W 5\% | 3 |
|  |  | Ref: R5;R6;R7 |  |
| 220 | 1039 | SOCKET16 PIN DIP | 4 |
|  |  | Ref: REF;U2;U4;J4;J5 |  |
| 230 | 8228 | SOCKET40 PIN IC | 1 |
|  |  | Ref: REF;U3 |  |
| 240 | 3679 | VR 7805 | 1 |
|  |  | Ref: U1 |  |
| 250 | 10891 | IC 74HC147N | 2 |
|  |  | Ref: U2;U4 |  |
| 260 | 11046 | IC PROGRAMMED MONITOR BD | 1 |
|  |  | Ref: U3 |  |





CT2002 CLOCK/TIMER CONSOLE VERSION
BLANK BOARD 14400 B
ASSEMBLY 14401B


CT2002 CLOCK/TIMER CONSOLE VERSION

## BLANK BOARD 14400B

ASSEMBLY 14401B

## CT-2002 CLOCK/TIMER PARTS LIST

| LINE | PART \# |  | QTY. |
| :---: | :---: | :---: | :---: |
|  |  | REFERENCE DESIGNATION |  |
| 10 | 14400 | CT-2002 CONSOLE C/T DETAIL | 1 |
| 20 | 5729 | RES 2.21K 1/4W 1\% | 16 |
|  |  | Ref: R1;R2;R5;R6;R12;R11;R18;R17;R27;R26;R33;R32;R37;R36;R41;R40 |  |
| 30 | 2816 | RES 10.0K 1/4W 1\% | 7 |
|  |  | Ref: R22;R28;R24;R34;R14;R16;R19 |  |
| 40 | 1143 | RES 100 OHM 1/4W 1\% | 7 |
|  |  | Ref: R4;R7;R13;R35;R21;R38;R30; |  |
| 50 | 1030 | RES 470 OHM 1/4W 5\% | 5 |
|  |  | Ref: R20;R23;R25;R29;R31 |  |
| 60 | 9806 | RES 120 OHM 1/4W 5\% | 1 |
|  |  | Ref: R39 |  |
| 70 | 3558 | RES 5.11K 1/4W 1\% | 2 |
|  |  | Ref: R8;R9 |  |
| 80 | 5872 | RES 1.0K 1/4W 1\% | 2 |
|  |  | Ref: R10;R15 |  |
| 90 | 10815 | RES 22 OHM 3W 5\% | 1 |
|  |  | Ref: R3 |  |
| 100 | 5743 | CAP .1UF FILM | 7 |
|  |  | Ref: C7 THRU C13 |  |
| 110 | 8192 | CAP 30PF SILVER MICA | 1 |
|  |  | Ref: C5 |  |
| 120 | 7012 | DIODE 1N4005 | 1 |
|  |  | Ref: D10 |  |
| 130 | 1012 | DIODE 1N4148 | 1 |
|  |  | Ref: D12 |  |
| 140 | 9330 | DIODE 1N5817 | 1 |
|  |  | Ref: D13 |  |
| 150 | 7786 | DIODE 1N4735A | 1 |
|  |  | Ref: D11 |  |
| 160 | 13051 | 3MM RED LED HI BRIGHTNESS | 9 |
|  |  | Ref: D1 THRU D9 |  |
| 170 | 10927 | CAP 4.2-20PF TRIMMER | 1 |
|  |  | Ref: C3 |  |
| 180 | 10797 | LED DUAL SEVEN SEGMENT RED | 3 |
|  |  | Ref: DS1;DS2;DS3 |  |
| 190 | 5744 | CAP 100UF 25V RAD 20\% | 1 |
|  |  | Ref: C2 |  |
| 200 | 8191 | CAP 10UF 35V ELEC | 1 |
|  |  | Ref: C6 |  |
| 220 | 6119 | TRANSISTOR 2N4403 | 8 |
|  |  | Ref: Q7 THRU Q14 |  |
| 230 | 10328 | TRANSISTOR 2N7000 | 6 |
|  |  | Ref: Q1 THRU Q6 |  |


| LINE | PART \# | DESCRIPTION | QTY. |
| :---: | :---: | :---: | :---: |
|  |  | REFERENCE DESIGNATION |  |
| 240 | 3679 | VR 7805 | 1 |
|  |  | Ref: U2 |  |
| 260 | 14505 | IC LTC1690 | 1 |
|  |  | Ref: U4 |  |
| 270 | 14359 | PHOTODETECTOR | 1 |
|  |  | Ref: U1 |  |
| 280 | 1011 | SOCKET 8 PIN DIP | 1 |
|  |  | Ref: REF;U4 |  |
| 290 | 8228 | SOCKET 40 PIN IC | 1 |
|  |  | Ref: REF; U3 |  |
| 300 | 11338 | RJ45 VERTICAL SHIELDED | 2 |
|  |  | Ref: J5;J6 |  |
| 310 | 14504 | CONNECTOR 9 PIN D FEMALE | 1 |
|  |  | Ref: J7 |  |
| 320 | 7050 | HEADER 2 PIN MTA . 1 | 1 |
|  |  | Ref: J2 |  |
| 330 | 5892 | HEADER 3 PIN MTA . 1 | 1 |
|  |  | Ref: J4 |  |
| 340 | 7051 | HEADER 4 PIN MTA . 1 | 1 |
|  |  | Ref: J1 |  |
| 350 | 5890 | HEADER 7 PIN MTA . 1 | 1 |
|  |  | Ref: J3 |  |
| 360 | 7903 | HEADER 2 PIN SINGLE ROW . 1 | 2 |
|  |  | Ref: JU1;JU2 |  |
| 370 | 2846 | HEAT SINK T0-220 | 1 |
|  |  | Ref: REF; U2 |  |
| 390 | 9292 | NUT KEP \#4 | 1 |
|  |  | Ref: REF; U2 |  |
| 400 | 7601 | SIL-PAD TO-220 | 1 |
|  |  | Ref: REF;U2 |  |
| 410 | 11073 | LED SPACER | 5 |
|  |  | Ref: REF; D5 THRU D9 |  |
| 420 | 5758 | JUMPER PLUG . 1 | 2 |
|  |  | Ref: REF; JU1;JU2 |  |
| 430 | 7535 | CAP 470 UF 25 V ELEC | 1 |
|  |  | Ref: C1 |  |
| 440 | 13132 | CRYSTAL 20 MHZ | 1 |
|  |  | Ref: Y1 |  |
| 450 | 11072 | LED SPACER | 4 |
|  |  | Ref: REF;D1;D2;D3;D4 |  |
| 480 | 7281 | CAP 18PF SILVER MICA | 1 |
|  |  | Ref: C4 |  |
| 490 | 14506 | IC PIC16F874 | 1 |
|  |  | Ref: U3 |  |


| LINE | PART \# | DESCRIPTION | QTY. |
| :--- | :--- | :--- | :---: |
|  |  | REFERENCE DESIGNATION |  |
| 500 | 9320 | SCREW PHIL PH 4-40 X 5/16 |  |
|  |  | Ref: REF; U2 |  |
| 510 | 1014 | CAP 10UF 25V NP |  |
|  |  | Ref: C14;C15 |  |
| 520 | 7792 | RES $1.62 \mathrm{~K} 1 / 4 \mathrm{~W} 1 \%$ |  |






ASSEMBLY MILLENUM-D 5 PN 15373B
ASSEMBLY MLLENUM-D RJ45 15374B

## Analog Output Board Parts List

## DESCRIPTION

| LINE | PART \# | REFERENCE DESIGNATION | QTY. |
| :---: | :---: | :---: | :---: |
| 10 | 14799 | MILLENIUM OUTPUT BOARD DETAIL |  |
| 20 | 2828 | RES 4.7 OHM 1/2W 5\% | 1 |
|  |  | Ref: R19 |  |
| 30 | 1009 | RES 47 OHM 1/2W 5\% | 2 |
|  |  | Ref: R46;R47 |  |
| 40 | 8883 | RES 1.8K 1/2W 5\% | 5 |
|  |  | Ref: R242;R241;R240;R238;R239 |  |
| 50 | 5876 | RES 100K 1/4W 1\% | 9 |
|  |  | Ref: R34;159;162;187;192;197;202;1;10 |  |
| 60 | 10813 | RES 4.99K 1/4W 1\% | 66 |
|  |  | Ref: R15;R16;R44;69;70;74;77;79-91;94-118;131;134-137;140-158 |  |
| 70 | 10813 | RES 4.99K 1/4W 1\% | 57 |
|  |  | Ref: R160;161;181-186;188-191;193-196;13;198-201;14;203-207;210 |  |
|  |  | 219;222;225;230-234;237;243;246-248;259;260;280;281;310-313 |  |
|  |  | 339;340;357-359 |  |
| 80 | 5716 | RES 1.0 MEG 1/4W 1\% | 21 |
|  |  | Ref: R8;21;24;25;28;29;163;164;35;36;11;12;41;17;58;64;7;360;377 |  |
|  |  | R18;R20 |  |
| 90 | 5723 | RES 4.02K 1/4W 1\% | 9 |
|  |  | Ref: R78;38;60;306;308;65;337;338;32 |  |
| 100 | 5873 | RES 46.4 OHM 1/4W 1\% | 28 |
|  |  | Ref: R173;175;177;179;165;211;213;215;217;123;125;127;129;282;294 |  |
|  |  | 296;298;300;302;167;169;314;326;328;330;332;334;171 |  |
| 110 | 5726 | RES 20.0K 1/4W 1\% | 4 |
|  |  | Ref: R50;R42;R66;R71 |  |
| 120 | 8794 | RES 221 OHM 1/4 W 1\% | 5 |
|  |  | Ref: R31;R55;R43;R73;R67 |  |
| 130 | 2816 | RES 10.0K 1/4W 1\% | 50 |
|  |  | Ref: R229;119-122;216;4;124;218;126;214;128;212;261-276;130; 283-293 |  |
| 140 | 2816 | RES 10.0K 1/4W 1\% | 35 |
|  |  | $\begin{aligned} & \text { Ref: R295;297;299;301;303;305;307;309;5;327;226;329;331;333;335; } \\ & \text { 170;341-350;352;354;356;227;228;6;3;361-370;172 } \end{aligned}$ |  |
| 150 | 5872 | RES 1.0K 1/4W 1\% | 16 |
|  |  | Ref: R33;37;277;223;351;9;45;61;27;54;371-376 |  |
| 160 | 8813 | RES 226K 1/4W 1\% | 10 |
|  |  | Ref: R319-325;316-318 |  |
| 170 | 1143 | RES 100 OHM 1/4W 1\% | 3 |
|  |  | Ref: R224;57;52 |  |
| 180 | 9299 | RES 2.0K 1/4W 1\% | 6 |
|  |  | Ref: R336;278;353;355;279;304 |  |
| 190 | 5882 | RES 4.7M 1/4W 5\% | 5 |
|  |  | Ref: R253;249-252 |  |
| 200 | 5729 | RES 2.21K 1/4W 1\% | 3 |
|  |  | Ref: R56;62;39 |  |
| 210 | 14810 | RES 23.7K 1/4W 1\% | 20 |
|  |  | Ref: R209;76;178;176;180;220;221;235;236;244;245;92;93;174;208; 132;133;75;138;139 |  |
| 220 | 5727 | RES 15.0K 1/4W 1\% | 2 |
|  |  | Ref: R49;23 |  |
| 230 | 5734 | RES 187K 1/4W 1\% | 3 |
| 240 | 5725 | RES 392 OHM 1/4W 1\% | 5 |
|  |  | Ref: R256;254;257;258;255 |  |
| 250 | 7512 | RES 82.5K 1/4W 1\% | 1 |
|  |  | Ref: R22 |  |


| LINE | PART \# | DESCRIPTION | QTY. |
| :---: | :---: | :---: | :---: |
|  |  | REFERENCE DESIGNATION |  |
| 260 | 7513 | RES 49.9K 1/4W 1\% | 2 |
|  |  | Ref: R315;R2 |  |
| 270 | 10383 | CAP 5PF DISC 500V 5\% NPO | 10 |
|  |  | Ref: C170-C179 |  |
| 280 | 7482 | CAP 470PF 50V DISK | 1 |
|  |  | Ref: C11 |  |
| 290 | 5739 | CAP 100PF DISC 5\% 100V | 34 |
|  |  | Ref: C13;19;25;34;38;40;49;55-57;60;64;69;70;78;81;85;86;104;107 |  |
|  |  | 111;112;115;119;137;143-146;161;165-168 |  |
| 300 | 5743 | CAP .1UF FILM | 40 |
|  |  | Ref: C5-7;9;10;12;22;24;33;36;37;43;52;62;71;82;109;113;114;117; 120-124:147-160;164 |  |
| 310 | 5863 | CAP .0022UF 50V FILM | 28 |
|  |  | Ref: C45;125-133;140-142;46-48;14;15;27;28;31;32;17;18;20;41;42; |  |
| 320 | 5860 | CAP .01UF 5\% 50V FILM | 1 |
|  |  | Ref: C189 |  |
| 330 | 5744 | CAP 100UF 25V RAD 20\% | 12 |
|  |  | Ref: C2;C3;4;8;16;26;39;50;54;58;59;103 |  |
| 340 | 7012 | DIODE 1N4005 | 2 |
|  |  | Ref: D1;D5 |  |
| 350 | 1012 | DIODE 1N4148 | 6 |
|  |  | Ref: D2;D3;D4;D8;D9;D10 |  |
| 360 | 7535 | CAP 470 UF 25 V ELEC | 1 |
|  |  | Ref: C1 |  |
| 370 | 15339 | DIODE 1N270 | 20 |
|  |  | Ref: D11-D30 |  |
| 380 | 5865 | CAP 1UF 20\% 50V ELECT | 1 |
|  |  | Ref: C44 |  |
| 390 | 14824 | TRANSIENT VOLTAGE SUPPRESSOR | 2 |
|  |  | Ref: D6;D7 |  |
| 400 | 5751 | TRANSISTOR P1086 | 1 |
|  |  | Ref: Q7 |  |
| 410 | 6118 | TRANSISTOR 2N4401 | 4 |
|  |  | Ref: Q3;Q4;Q5;Q6 |  |
| 420 | 14850 | POT 50K TOP ADJ | 7 |
|  |  | Ref: VR1;VR2;VR3;VR4;VR5;VR6;VR26 |  |
| 430 | 6119 | TRANSISTOR 2N4403 | 2 |
|  |  | Ref: Q1;Q2 |  |
| 440 | 7995 | POT 10K TOP ADJUST | 24 |
|  |  | Ref: VR8-VR25;VR7;VR27-VR31 |  |
| 450 | 1014 | CAP 10UF 25V NP | 7 |
|  |  | Ref: C23;29;30;35;67;68;188 |  |
| 460 | 15340 | IC VCA 2181LB | 5 |
|  |  | Ref: U1;U4;U5;U7;U8 |  |
| 470 | 1049 | CAP 100UF 25 V NP | 5 |
|  |  | Ref: C190-194 |  |
| 480 | 1011 | SOCKET 8 PIN DIP | 14 |
|  |  | Ref: REF; U6;U9;U14;U15;U16;U17;U18;U20;U21;U22;U23;U24;U25;U29 |  |
| 490 | 1011 | SOCKET 8 PIN DIP | 14 |
|  |  | Ref: REF;U30;U31;U32;U33;U34;U35;U36;U37;U38;U39;U40;U41;U42;U43 |  |
| 500 | 1039 | SOCKET 16 PIN DIP | 6 |
|  |  | Ref: U10;U11;U12;U13;U19;J9 |  |
| 510 | 13049 | IC LM4765T | 2 |
|  |  | Ref: U2;U3 |  |
| 520 | 1027 | SOCKET 14 PIN DIP | 3 |
|  |  | Ref: REF;U26;U27;U28 |  |


| LINE | PART \# | DESCRIPTION | QTY. |
| :---: | :---: | :---: | :---: |
|  |  | REFERENCE DESIGNATION |  |
| 530 | 1010 | IC 5532 | 27 |
|  |  | Ref: U9;U14-U18;U20-U25;U29-U43 |  |
| 540 | 3675 | IC 4558 | 1 |
|  |  | Ref: U6 |  |
| 550 | 1042 | IC LM339N | 3 |
|  |  | Ref: U26;U27;U28 |  |
| 560 | 6120 | IC 4051 | 4 |
|  |  | Ref: U10;U11;U12;U13 |  |
| 570 | 5752 | IC 4053 | 1 |
|  |  | Ref: U19 |  |
| 580 | 5756 | HEADER 26 PIN DUAL ROW . 1 | 1 |
|  |  | Ref: J38 |  |
| 590 | 5753 | HEADER 5 PIN | 3 |
|  |  | Ref: J7;36;37 |  |
| 600 | 11338 | RJ45 VERTICAL SHIELDED | 11 |
|  |  | Ref: J11;J12;J15;J16;J19;J20;J25;J26;J29;J30;J33 |  |
| 610 | 7050 | HEADER 2 PIN MTA . 1 | 1 |
|  |  | Ref: J4 |  |
| 620 | 5892 | HEADER 3 PIN MTA . 1 | 3 |
|  |  | Ref: J1;J10;J34 |  |
| 630 | 7051 | HEADER 4 PIN MTA . 1 | 1 |
|  |  | Ref: J3 |  |
| 640 | 5890 | HEADER 7 PIN MTA . 1 | 1 |
|  |  | Ref: J24 |  |
| 650 | 5891 | HEADER 12 PIN MTA . 1 | 1 |
|  |  | Ref: J23 |  |
| 660 | 5749 | HEADER 15 PIN MTA . 1 | 2 |
|  |  | Ref: J2;J5 |  |
| 670 | 7502 | HEADER 4 PIN MTA . 156 | 1 |
|  |  | Ref: J8 |  |
| 680 | 5893 | HEADER 10 PIN MTA . 156 | 1 |
|  |  | Ref: J6 |  |
| 690 | 7872 | HEAT SINK RS OUTPUT BOARD | 2 |
|  |  | Ref: REF;U2;U3 |  |
| 700 | 13047 | SIL-PAD LARGE TO-220 | 2 |
|  |  | Ref: REF; U2;U3 |  |
| 710 | 7646 | KEP NUT \#6 | 2 |
|  |  | Ref: REF; U2;U3 |  |
| 720 | 9142 | SCREW PH PHIL 6-32 X 1/4 | 2 |
|  |  | Ref: REF; U2;U3 |  |
| 730 | 14892 | CAP 47PF 100V NP0 ( 20 LEAD) | 40 |
|  |  | $\begin{aligned} & \text { Ref: C51;53;61;63;65;66;74-77;79;80;83;84;95;97;99;101;105;106; } \\ & \text { 108;110;116;118;134;135;136;138;139;162;163;169;180-187 } \end{aligned}$ |  |
| 740 | 7518 | RES 39.2K 1/4W 1\% | 2 |
|  |  | Ref: R166;R168 |  |
| 750 | 9048 | RES 33.2K 1/4W 1\% | 2 |
|  |  | Ref: R26;R53 |  |
| 760 | 9662 | CAP 22UF 25V NP | 14 |
|  |  | Ref: C73;87-94;96;98;100;102;72 |  |




RADIO SYYTEMS
LOGAN TWP, NJ
MILLENUMM CONSOLE SWITCHING POWER SUPPLY CONTROLLER
BLANK BOARD 16222 A
ASSEMBLY $+15 /-15 *+516224 \mathrm{~A}$
ASSEMBLY $+/-15 \&+15$ AUX 16225A
ASSEMBLY $+/-15 \&+5 \&+15$ AUX 16225 A
ASSEMBLY $+/-15$
ASSEMBLY TOP


Radio systems
MILLENUMM CONSOLE SWITCHING POWER SUPPLY CONTROLLER
blank board 16222A
ASSEMBLY $+15 /-1516223 \mathrm{~A}$
ASSEMBLY +15/-15 \& +5 16224A
ASSEMBLY $+/-15$ \& +15 AUX 16225
ASSEMBLY $+/-15 \&+5 \&+15$ AUX 16225A
ASSEMBLY BOTTOM

## POWER SUPPLY INTERFACE PARTS LIST

| LINE | PART \# | DESCRIPTION <br> REFERENCE DESIGNATION | QTY. |
| :--- | :--- | :--- | :--- |
| 10 | 16219 | MILLENUIM D SWITCH PS CHASSIS |  |
| 20 | 16220 | MILLENUIM D SWITCH PS FRT PNL | 1 |
| 21 | 8551 | SCREW 10-32 X 1/2" BLACK OXIDE | 1 |
| 22 | 9291 | NUT KEP 10 10-32 | 4 |
| 30 | 16221 | MILLENUIM D SWITCH PS COVER | 4 |
| 35 | 16182 | SCREW 4-40 X 1/4 TAPTITE | 1 |
| 40 | 16209 | POWER SUPPLY 15V 6.6A SWITCHER | 8 |
| 45 | 8047 | SCREW 6-32 X 5/8 PH PHIL | 2 |
| 46 | 1093 | WASHER LOCK \#6 | 8 |
| 50 | 16451 | CORCOM EMI FILTER | 8 |
| 51 | 1091 | SCREW 6-32 3/8 PANHEAD | 1 |
| 60 | 16223 | MILLENUIM D SWITCH BD \#1 | 2 |
| 65 | 11315 | SCREW 6-32 X 1/4 PH PHIL ITLW | 1 |
| 70 | 9937 | HOUSING 3 PIN .156 | 6 |
| 80 | 16453 | HOUSING 12 PIN .156 | 5 |
| 90 | 11485 | HOUSING 5 PIN MTA .156 | 2 |
| 100 | 11486 | KEYING PLUG MTA .156 | 2 |
| 140 | 1154 | NUT KNURL 6-32 | 2 |
| 150 | 2919 | SCREW 6-32 X 1/2 PH PHIL | 2 |
| 160 | 7646 | KEP NUT \#6 | 2 |
| 180 | 9155 | POWER CABLE 3-COND TO IEC | 2 |
| 190 | 16470 | POWER SUPPLY CABLE PS-DIGITAL | 1 |
| 210 | 1155 | LUG \#6 SOLDER | 1 |
| 220 | 15156 | RICHCO SNAP RIVET BLACK | 2 |
| 230 | 16566 | CONSOLE POWER SUPPLY BOX | 2 |
| 240 | 16567 | CONSOLE P/S FOAM END CAPS | 1 |
| 250 | 16536 | CABLE PS-DIGITAL POWER | 2 |



$\sqrt{-100}$






| LINE | PART \# | CONSOLE DA MIXER PARTS LIST | QTY. |
| :---: | :---: | :---: | :---: |
|  |  | DESCRIPTION |  |
|  |  | REFERENCE DESIGNATION |  |
| 10 | 16448 | RS MILLENIUM CONSOLE DA DETAIL | 1 |
| 20 | 16513 | RES SMT 4.99K OHM | 42 |
|  |  | Ref: R1;2;4;8;9;11;12;13;16;17;19;21;22;24;25;26;28;31;33;35;36 |  |
|  |  | 38;40;41;43;44;45;47;49;50;52;54;55;57;59;61;63;64;66;68;72 |  |
| 30 | 16513 | RES SMT 4.99K OHM | 14 |
|  |  | Ref: 75;76;77;79;80;82;84;86;88;89;90;91;92;94 |  |
| 40 | 16350 | RES SMT 30.1 OHM 1/8W 1\% | 16 |
|  |  | Ref: R34;R58;R20;R60;R7;R65;R39;R71;R14;R15;R27;R78;R48;R83;R85 |  |
|  |  | R53 |  |
| 50 | 16019 | RES SMT 1.0K 1/8W 1\% | 8 |
|  |  | Ref: R42;R74;R3;R87;R51;R18;R62;R32 |  |
| 60 | 16400 | RES SMT 402 OHM | 8 |
|  |  | Ref: R81;R37;R67;R23;R46;R10;R93;R56 |  |
| 70 | 16020 | RES SMT 10K 1/8W 1\% | 8 |
|  |  | Ref: R29;R69;R30;R6;R5;R70;R95;R96 |  |
| 80 | 16005 | CAP SMT .1UF 50V CERM X7R | 20 |
|  |  | Ref: C1;C10;C12;C14;C15;C19;C22;C29;C30;C34;C35;C40;C42;C49;C50; |  |
| 90 | 16347 | CAP SMT .0022PF 50V CERM | 16 |
|  |  | Ref: C23;C27;C32;C11;C36;C38;C4;C41;C6;C44;C48;C16;C53;C55;C18; C60 |  |
| 100 | 16346 | CAP SMT 47PF 50V CERM | 16 |
|  |  | Ref: C33;C47;C28;C17;C51;C52;C9;C39;C56;C7;C20;C21;C63;C64;C65; C8 |  |
| 110 | 16053 | CAP SMT 1000PF 50V CERM | 8 |
|  |  | Ref: C26;C46;C25;C2;C3;C45;C67;C68 |  |
| 120 | 16152 | CAP SMT 100UF 25V ELEC | 2 |
|  |  | Ref: C69;C70 |  |
| 130 | 16153 | CAP SMT 100UF 50V ELECT | 1 |
|  |  | Ref: C71 |  |
| 140 | 16063 | IC SMT NE5532D | 10 |
|  |  | Ref: U1;U2;U3;U4;U5;U6;U7;U8;U9;U10 |  |
| 150 | 16405 | POT SMT TRIM 10K 6MM | 8 |
|  |  | Ref: VR1;VR2;VR3;VR4;VR5;VR6;VR7;VR8 |  |
| 160 | 7076 | HEADER 8 PIN DUAL ROW . 1 | 8 |
|  |  | Ref: JU1;JU2;JU3;JU4;JU5;JU6;JU7;JU8 |  |
| 170 | 5758 | JUMPER PLUG . 1 | 32 |
|  |  | Ref: JU1 THRU JU8 |  |
| 180 | 5892 | HEADER 3 PIN MTA . 1 | 2 |
|  |  | Ref: J5;J6 |  |
| 190 | 7790 | TERMINAL BLOCK 5 PIN | 6 |
|  |  | Ref: J1;J2;J3;J4 |  |
| 200 | 1049 | CAP 100UF 25 V NP | 8 |
|  |  | Ref: C5;C13;C24;C31;C37;C43;C54;C62 |  |




## Millenium Digital Console Specifications

## Models Available

RS-6d: 6 Channel RS-12d: 12 Channel RS-18d: 18 Channel
Measurements are made with 600 ohm loads connected to the analog outputs.
0 dBu equals 0.775 volts RMS independent of load impedance, 0 dBm equals 0.775 volts into a 600 ohm load.
Reference Level: +4 dBu equals -20 dBFS . FSD equals Full Scale Digital equals +24 dBu

## Analog Line Inputs

## Input Impedance:

40k ohms, instrumentation amplifier balanced
Input Level Range:
jumper selectable nominal input level of -16 dBu ,
$-6 d B u$ or +4 dBu
Input Level Trim:
software trim (digital gain adjust) +/-12.5 dB.
Input Headroom:
20 dB above nominal input

## Analog Monitor Inputs

## Input Impedance:

10k ohms minimum, differentially balanced

## Input Level Range:

Adjustable +4 dBu nominal, -10 dBu minimum
Input Headroom:
20 dB above nominal input

## Microphone Preamplifiers

Input Impedance:
10k ohmsSource Impedance: 150 ohms
Input Level Range:
Selectable in 5 dB steps, -62 dBu to -22 dBu
Equivalent Input Noise:
$-128 \mathrm{dBu}, 150$ ohm source, 20 kHz measurement bandwidth

Input Headroom:
20 dB above nominal inputAnalog Outputs
Output Source Impedance:
Utility Buses <3 ohms balanced, all others 90 ohms.
Output Load Impedance:
600 ohms minimum
Nominal Output Level:
$+4 \mathrm{dBu}$
Maximum Output Level:
$+24 \mathrm{~dB}$

## Digital Inputs

## Signal Format:

AES-3, S/PDIF
Signal Compliance:
24 bit
Input Sample Rate:
32 kHz - 96 kHz , sample rate conversion is pro-
vided for all digital inputs
Input Level:
-20 dBFS nominal
Input Level Trim:
software trim (digital gain adjust) +/-12.5 dB.
Input Headroom:
20 dB above nominal input

## Digital Outputs

## Signal Format:

AES-3

## Signal Compliance:

24 bit Output Sample Rate: 48 kHz

## Digital Reference:

Crystal (internal) or external AES-3 input at 48 kHz 100 ppm

## Internal Sample Rate:

48 kHz
Processing Resolution:
32 bit floating point DSP
Conversions:
A/D 24-bit, Delta-Sigma, 256x oversampling; D/A
24-bit, Delta-Sigma, 256x oversampling
Latency:
$<1.0 \mathrm{~ms}$, analog in to analog out

## Frequency Response

Line Input to Program or Utility Output:
$+0 \mathrm{~dB} /-0.3 \mathrm{~dB}, 20 \mathrm{~Hz}$ to 20 kHz
Microphone Input to Program or Utility Output:
$+0 \mathrm{~dB} /-.3 \mathrm{~dB}, 20 \mathrm{~Hz}$ to 20 kHz
Dynamic RangeAnalog Input to Analog Output:
106 dB referenced to FSD, 22 kHz measurement bandwidth, 109 dB " $A$ " weighted
Analog Input to Digital Output:
109 dB referenced to FSD, 22 kHz measurement bandwidth, 112 dB " $A$ " weighted
Digital Input to Analog Output:
109 dB referenced to FSD, 22 kHz measurement bandwidth, 112 dB " A " weighted
Digital Input to Digital Output:
123 dB referenced to FSD, 22 kHz measurement bandwidth, 126 dB " A " weighted

## Total Harmonic Distortion + Noise

## Analog Input to Analog Output:

$<0.006 \%, 20 \mathrm{~Hz}$ to $20 \mathrm{kHz},+23 \mathrm{dBu}$ input, +23 dBu output, 22 kHz measurement bandwidth

## Analog Input to Digital Output:

$<0.004 \%, 20 \mathrm{~Hz}$ to $20 \mathrm{kHz},+23 \mathrm{dBu}$ input, +23 dBu output, 22 kHz measurement bandwidth
Digital Input to Digital Output:
$<0.0005 \%, 20 \mathrm{~Hz}$ to $20 \mathrm{kHz},-1 \mathrm{dBFS}$ input, -1 dBFS output, 22 kHz measurement bandwidth
Digital Input to Analog Output:
$<0.004 \%, 20 \mathrm{~Hz}$ to 20 kHz ,-1 dBFS input, +23 dBu output, 22 kHz measurement bandwidth
Isolation
Program-to-Program or Program-to-Utility:
$>88 \mathrm{~dB}, 20 \mathrm{~Hz}$ to 20 kHz A Input to B Input, B Input to A Input, >100 dB

## Cross-Talk (Stereo Separation)

## Analog Program Outputs:

$>88 \mathrm{~dB}, 20 \mathrm{~Hz}$ to 20 kHz

## Millenium Digital Consoles Parts Ordering

| Digital Consoles Model RS-6D5P | 6 Channel Digital Console with 5 Pin I/O connectors | Part \# RS-6D5P |
| :---: | :---: | :---: |
| Model RS-6DRJ | 6 Channel Digital Console with RJ-45 I/O connectors |  |
| Model RS-12D5P | 12 Channel Digital Console with 5 Pin I/O connectors | RS-12D5P |
| Model RS-12DRJ | 12 Channel Digital Console with RJ-45 I/O connectors | RS-12DRJ |
| Model RS-18D5P | 18 Channel Digital Console with 5 Pin I/O connectors | RS-18D5P |
| Model RS-18DRJ | 18 Channel Digital Console with RJ-45 I/O connectors | RS-18DRJ |
| Digital Console Accessories |  |  |
| RS-6d 6 Channel Console | Copy Stand | COPY-6D |
|  | Spare Power Supply | PS-CONSOLE |
|  | StudioHub+ Harness | Call |
| RS-12d 12 Channel Console | Copy Stand | COPY-18D |
|  | Spare Power Supply | PS-CONSOLE |
|  | StudioHub+ Harness | Call |
| RS-18d 18 Channel Console | Copy Stand | COPY-18D |
|  | Spare Power Supply | PS-CONSOLE |
|  | StudioHub+ Harness | Call |
| System Options |  |  |
| Hot Standby Power Supply |  | PS-DIGITALHS |
| Enhanced Interface Card |  | REMOTE |
| Four Source Switcher Card |  | ROUTER |
| Intercom Card |  | INTERCOM |
| Intercom Speaker |  | 7696 |
| DA Card |  | DA-MIXER |
| Penny \& Giles Fader Option |  | P\&G |
| Accessory Relay - Mechanical |  | 4PDT |
| Accessory Relay - Electrical |  | SPDT |
| Colored Fader Knobs | Blue | 11203 |
|  | White | 11167 |
|  | Red | 11166 |
|  | L. Blue | 14735 |
|  | Grey | 14734 |
| Replacement Parts |  |  |
| Auxiliary Meter |  | 15258 |
| Spare Semiconductor Parts Kit |  | 15325 |
| Discount Spare Parts Kit \#1 |  | 15326 |
| Discount Spare Parts Kit \#2 |  | 15327 |
| Front Panel Control Board |  | 10887 |
| Front Panel Monitor Board |  | 10882 |
| Input Mother Board | 5 -pin version | 14904 |
|  | RJ-45 version | 14905 |
| Digital Input Plug-in Card |  | 15304 |
| Analog Input Plug-in Card |  | 15303 |
| Analog Output Board | 5 -pin version | 14800 |
|  | RJ-45 version | 15328 |
| Digital Output Board | 5 -pin version | 15305 |
|  | RJ-45 version | 15306 |
| Linear Fader |  | 10898 |
| Rotary Pot Assembly |  | 11025 |
| On/Off Rubber Keypad |  | 15273 |
| Input/Bus Select Keypad |  | 15272 |
| Monitor Select Keypad |  | 15274 |
| Cue Speaker Assembly |  | 7563 |
| Headphone Jack Assembly |  | 7548 |
| Remote Extender Cable |  | 15330 |

## Millenium Consoles - Warranty and Repair Policies Warranty

Radio Systems, Inc., warrants this equipment to be free from defects in materials and workmanship for a period of two (2) years for all electronic parts and subassemblies and a period of one (1) year for all mechanical parts such as faders and meters..
This warranty extends to first users of the product and future owners who purchase the product within the warranty period.

The terms of this warranty are null and void if this product is stored or operated in an environment not conducive to electronic equipment, or shows signs of misuse or modifications which affect the proper functioning of the product. This warranty does not apply to damage caused by fire, smoke, flood, lightning, or acts of nature and physical abuse.

Radio Systems, Inc., and its associated companies, authorized distributors, and personnel are not liable for loss of revenues or other damages, or effects to the broadcast signal quality or coverage which may result from the from the improper functioning of this product.

## Repair Policy

Technical assistance is available at any time, at no charge, by phone or correspondence.
During the warranty period, there will be no charge for parts or service made to units which show no sign of misuse by customer or lightning caused damage. The customer is responsible for the cost of shipping their unit back to Radio Systems for repair.
During the warranty period, shipment of small parts and assemblies will be made at no charge to the user. Emergency, next day shipments of replacement parts and circuits will also be made at no charge at the user's request. Chargeable services will be made COD or on Net-30 day terms to users with established accounts.
During the warranty period, users must return defective parts upon request to receive no-charge warranty services. Return shipping expenses are the responsibility of the user.

## Return Instructions

Contact Radio Systems for a return authorization number.
Pack all items carefully and ship prepaid, via UPS insured, to:

## Radio Systems, Inc.

Attn: R.A. \# $\qquad$
601 Heron Drive
Logan Twp., NJ 08085
Enclose a note which includes your name, company, phone number, the serial number, return address (no box numbers), and a complete description of the problem.

## Millenium - Digital Console Software

## Overview

Install the Millenium control software in your PC by inserting the CD and clicking on the "INSTALL" icon. Use the included RS-232 D to RJ-45 adapter (RS part \# 15329) and CAT-5 patch cord to connect the com port of your PC to the Main RS-232 connector located on the RJ-45 jack on the digital output board.

## Multiple Console Connection

Note that the Millenium-D serial line uses the RS-232 multi-drop protocol, allowing one serial line to be connected in parallel to multiple Millenium-D consoles. Each console must be set with a unique ID \#. The last (or only) console should have the serial port terminated. Consult the "Communications" software page in this section of the manual for more information.

## Establish Communication

On the "Select Console" pull-down menu, select "console 1."
When communication is established, the top menu bar will immediately display the console number.
If no console number is displayed, check that you have selected com port \#1 via your PC set-up, check that RS-232 wiring is accurate, or check the console ID. Consult the "Select Console" software page in this section of the manual for more information.

## Channel Settings

Use this menu to set channel "Cue Exclusive" functions and input and pre-fader levels.
Consult the "Channel Settings" software page in this section of the manual for more information.

## Output Level

Use this menu to set analog and digital Program and Utility bus output levels.
Consult the "Output Level" software page in this section of the manual for more information.

## Utility Buses

Use this menu to set analog the 10 utility buses main and alternate mix configurations Consult the "Utility Buses" software page in this section of the manual for more information.

## 8 Position Switches

Use this menu to program the function of the 8 position switcher on the console front panel.
Consult the example pages which follow this page for suggested applications and the " 8 Position Switches" software page in this section of the manual for more information.

## Communications / Serial COM Port / Help Screens

Use these final 3 menus to set com port ID's, factory defaults and obtain help information. Consult the "Communications," "Serial COM Port," and "Help Screens" software pages in this section of the manual for more information.

## Utility Bus (mix-minus) - typical use setup illustrations Creating mix-minus and additional stereo bus (DA) feeds from utility buses



To use as a "standard" mix-minus bus (e.g. hybrid or CODEC):
For this application, set all channels EXCEPT the two-way device's channel being fed this mix-minus (in this illustration Channel 10) - for A (or B) input / post on/off / post fader / program only.
\#1 Main Utility Bus Setup Screen - Example \#2 - Creating an additional stereo output bus


To use to create an additional output bus (distribution amplifier):
For this application, set all channels for A and B inputs / left channel / post on/off / post fader. Select the output bus (in this illustration, program is selected) for which you want to create an additional output. NOTE: Number 6 main utility bus setup screen must then be programmed identically, EXCEPT that the right channels must be checked to create a right channel program output.

Utility Bus (mix-minus) - typical use setup illustrations Creating an alternate offline feed from utility buses (program both screens below)
\#1 Alternate Utility Bus Setup Screen - Example \#3 - Creating an offline (secondary) feed

\#1 Main/Alternate Utility Bus Selection Screen - Example \#3 - Creating an offline (secondary) feed


## Use to create an "offline mix" to send DJ mic to caller when channel is placed in cue

For this application, create an alternate mix-minus screen for the mix-minus channel being fed the caller (in this illustration utility bus 1) with the DJ mic channel (in this illustration channel 1) set for A and B input / pre on/off / pre fader / all buses allowed(ie. always on).
Then, per the illustration above, set the main alt switching screen to select the alternate (DJ mic) feed when the caller channel (in this illustation channel 10) is placed in cue. Note, the channel on/off button or one of the eight position

## Utility Bus (mix-minus) - typical use setup illustrations Utilitzing utility buses for intercom feeds from utility buses

\#1 Alternate Utility Bus Setup Screen - Example \#4-Creating an intercom feed

|  |  |  | HANNEL | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | ALL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\stackrel{\text { c }}{\text { H }}$ |  | PREFADER LEFT | $\square$ | $\Gamma$ | - |
|  | $\stackrel{\text { H }}{\text { A }}$ |  | PREFADER RIGHT | $\sqrt{5}$ | $\Gamma$ | $\square$ |
|  | N | ${ }_{\text {F }}$ | postfader left | $\Gamma$ | - |
|  | E |  | POStFADER RIGHT | $\Gamma$ | - |
| N | c |  | PREFADER LEFT | $\sqrt{7}$ | $\Gamma$ | - |
| P | $\stackrel{H}{\text { a }}$ |  | Prefader right | $\sqrt{V}$ | $\Gamma$ | 5 | $\Gamma$ | $\square$ |
| U | N | N | Postfader left | $\Gamma$ | - |
| T | E |  | postfader right | $\Gamma$ | $\square$ |
| A |  | $s$ | PROGRAM | V | $\Gamma$ | $\square$ |
|  | B | ${ }_{\text {E }}$ | Auditioli | $\checkmark$ | $\Gamma$ | $\square$ |
|  | s | E | TELEPHOHE | $\sqrt{\square}$ | $\Gamma$ | - |
|  |  | T | no bus selected | $\Gamma$ | 「 | $\Gamma$ | $\square$ |
|  | H |  | PREFADER LeFT | $\Gamma$ | - |
|  | A | $\bigcirc$ | PREFADER RIGHT | $\Gamma$ | $\square$ |
|  | $\stackrel{N}{N}$ | ${ }_{\text {F }}$ | POSTFADER LEFT | $\Gamma$ | $\square$ |
| I | $\stackrel{\text { E }}{\text { L }}$ |  | Postfader right | $\Gamma$ | $\square$ |
| N | c |  | PREFADER LEFT | $\Gamma$ | $\square$ |
|  | $\stackrel{\text { H }}{\text { A }}$ |  | PREFADER RIGHT | $\Gamma$ | $\square$ |
| U | N | N | POSTFADER LEFT | $\Gamma$ | - |
| T | E |  | POSTFADER RIGHT | $\Gamma$ | $\square$ |
| B |  | $s$ | PROGRAM | $\Gamma$ | $\square$ |
|  |  | L | AVDItion | $\Gamma$ | - |
|  | s | E | telephoine | $\Gamma$ | $\square$ |
|  |  | T | Ho bus selected | $\Gamma$ | - |
| THIS IS UTILITY BUS ALTERNATE USE THIS BUS IN CONJUNCTIONVITH |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

\#1 Main/Alternate Utility Bus Selection Screen - Example \#4 - Creating an intercom feed

\#1 8 Position Switch Selection Screen - Example \#4-Creating an intercom feed


Use to create up to eight intercom or line level selectable feeds:
For this application create an alternate mix-minus screen with the DJ mic channel (in this illustration channel 1) set for A and B input / pre on/off / pre fader / all buses allowed (ie. always on).
Then, per the second illustration above, set the main alt switching screen to select the alternate utility bus 1 (DJ mic always on) feed when switch \#1 on the eight position switcher is pressed.

Then, per the third illustration above, program the eight position switches for momentary operation. Note that the switches can also be set for push on and push off in an exclusive, or non-exclusive mode as preferred for a specific application.


## Screen \#1 Select Console I.D.

Select the console number that you wish to communicate with.

Console is shipped from factory with default I.D. \#1.

## Select



## Screen \#2 Selected Console Not Found

Error message reports if the selected console I.D. is not found on the RS-232 communications buses. To identify a console on the bus, push and hold both the " 7 " and " 8 " buttons on the front panel selector for 5 seconds. The console will report its I.D select screen.

## M Millenium-D Control Software - [Output Levels]

Select Console Channel Settings Output Levels Utility Buses Eight Position Switches Communicate Com Port Help

## Channel Settings

This pull-down menu contains item selections which provide input channel operational and level settings, each selective on a channel-by-channel and/or input-byinput basis:

1- Programming of the "cue exclusive" mode"
2- Input A \& B level trim selection
3- Pre-fader level set selection

## Channel

## Screen \#1 Cue Exclusive

Select any input where it is desired that when the front-panel cue switch is depressed, all other main outputs (PGM, AUD, TEL) will be automatically muted.
Note, front panel bus selection lamps are not effected when in cue mode. Inputs will return to the buses selected when the cue mode is exited.


## Screen \#2 Input A Level Trims

Trim input levels in .1 db steps to a maximum of 12.5 db level boost or 12.5 dB level attenuation.

Trims should be set to match nominal operating levels (i.e.. so that all inputs present at 0 VU when the input fader is at odB (bold line set.)

## Screen \#3 Input B Level Trims

The next menu option is an identical screen for all "B" input level trims.

## Screen \#4 Pre-Fader Level Set

Select the output level for the pre-fader output buses. These buses are then available as utility busses as selected and routed on the "Utility Bus" menus.

Note - output levels may be trimmed from +15 db to off.

## M Millenium-D Control Software - [Output Levels]

Select Console Channel Settings Output Levels Utility Buses Eight Position Switches Communicate Com Port Help

## Output Level

This pull-down menu contains item selections which provide output level bus settings including:
1 - Output level set selection


## Screen \#1 Output Level Set

Select the output level for all digital output buses.
Note - output levels may be trimmed to a maximum of +4 db level boost or infinite dB level attenuation. Levels are factory default set to +4 dbu out (with input levels of 0 dB .)

## M Millenium－D Control Software－［Output Levels］

Select Console Channel Settings Output Levels Utility Buses Eight Position Switches Communicate Com Port Help

## Utility Buses

This pull－down menu contains item selections which provide Utility
Bus routing settings including：
1－10 Main Utility bus routing screens
2－10 Alternate Utility bus routing screens
3－1 Main／Alternate Utility Bus switching screen

Each of the 10 Utility bus provide a Main and Alternate set up screen to configure what channel audio will mix to comprise that Utility bus．Additionally，a Main／Alternate switching screen is provided to select when the Main or Alternate selections are active for each bus．


|  |  |  |  |  |  |  |  |  | Eggt Postuon Swiccies |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Utility fus 1 | Ssled Chamel | $\checkmark$ | Select hout $/ 8 / 8$ | $\checkmark$ | Seleet Cue Oriof | $\checkmark$ | Select Chamel Orioft | $\checkmark$ |  | $\stackrel{1}{4}$ | $\begin{array}{rl} 3 & 4 \\ -\ulcorner\Gamma \end{array}$ |  | $\stackrel{6}{\square}$ |  |  |
| Unitity Eus 2 | Salect Chamel | － | Select tpuifie | $\checkmark$ | Selet Cue Oniof | $\checkmark$ | Select Chamel Oriof | $\checkmark$ |  | 「 | 「「 | 「 | 「 |  |  |
| Uuility fus 3 | Salect Chamel | $\square$ | Select noun fir | $\checkmark$ | Select Cue Oriot | $\checkmark$ | Select Channe Orioft | $\checkmark$ |  | － | rr | $\Gamma$ | $\Gamma$ |  |  |
| untry eus 4 | Ssaled Chamel | $\checkmark$ | Select hout Are | $\checkmark$ | Select Cue Onloft | $\checkmark$ | Select Chame orict | $\checkmark$ |  | 「 | 「 | $\Gamma$ |  |  |  |
| Utility fues 5 | Ssalect Chamel | $\checkmark$ | Select pup five | $\checkmark$ | Select Cue andat | $\square$ | Select thamel orvort | $\checkmark$ |  | 「 | 「「 | 「 | $\Gamma$ |  |  |
| utuly eus 6 | Sslect Chamel | $\checkmark$ | Select tout A／E | $\checkmark$ | Select cue On＇ot | $\cdots$ | Select Channel Orictit | $\checkmark$ |  | － | 「 | r | 「 |  |  |
| Uuility Eus 7 | Staed Chamal | $\checkmark$ | Solect haut isis | $\checkmark$ | Solect tue aniot | $\square$ | Solect Chamel Iocict | $\checkmark$ |  | 「 | $\Gamma \Gamma$ | $\Gamma$ | $\Gamma$ |  | $\Gamma$ |
| Hutity Eus 8 | Ssalect cramel | $\square$ | Seledt huu fie | $\checkmark$ | Selest Cue Onioh | $\checkmark$ | Seleet Chamel Oriof | $\square$ |  | 「 「 | 「 「 | 「 | $\Gamma$ |  |  |
| Uufily fus 9 | Ssalect Chamel | $\checkmark$ | Select nput f／is |  | Select Cue Onvot | $\checkmark$ | Select Chamel Orictf | $\checkmark$ |  | 「 | $\Gamma \Gamma$ |  | $\Gamma$ |  | 「 |
| Utility fus 10 | Sslect Chamel | $\checkmark$ |  | $\cdots$ | Select Cue OniOfi | $\checkmark$ | Solect Channel OrviOff | $\because$ |  | －「 | 「「 | 「 | 「 |  | 「 |

## Screen \＃1－10 <br> Main Utility Bus Routing

Select witch input signals feed the Utility bus screen shown．Options for each input channel selected include：
Pre or post fader
Pre or post on／off switch
$A$ \＆B inputs
Left \＆Right channels．
Bus Selected

## Screen \＃11－21

Alternate Utility Bus Routing
When an alternate（second）mix for a Utility bus is required，configure this buse＇s alternate mix on the corresponding alternate Utility bus screen．Options for each input channel are identical to the main utility bus screen．Main／Alternate utility buses are automatically voted based on paramaters selected on menu option \＃22 below．

Note－When programming stereo pairs（for either analog or digital outputs）group as follows：
Out 1 －Channels $1 \& 6$
Out 2 －Channels 2\＆7
Out 3 －Channels 3\＆8
Out 4 －Channels 4\＆9
Out 5 －Channels 5\＆10

## Screen \＃22 <br> Main／Alternative Utility Bus Select

For each Utility Buss a trigger can be established to activate either a Main or Alternate buss configuration．Triggers include：
8 position front－panel switcher
Cue channel switching
Same channel on／off buttons
Other channel on／off buttons
Note 1 －If no trigger options are selected for a particular Utility Bus，that bus will remain constantly in the＂Main＂Utility bus mix selection．

Note 2 －Reentering and changing the＂ 8 position selector switch＂menu will require that all Main／Alternate Utility bus selections be reselected．

## M Millenium－D Control Software－［Output Levels］

Select Console Channel Settings Output Levels Utility Buses
Eight Position Switches
Communicate ComPort Help

## 8 Position Switches

This pull－down menu contains item selections which configure the operation of the 8 front panel selector switches．Menus include：

1－8 position switch interlock modes
2－Configuration change warning screen

## $\ulcorner$ All Eight Switches are Interlocked Together

## 「 Switches 1 to 4 are Interlocked Together

「 Switches 1 to 4 are Push On／Push Off or Momentary

「 Switches 5 to 8 are Interlocked Together
「 Switches 5 to 8 are Push On／Push Off or Momentary

## Screen \＃1 Eight Position Switch Setup

Select the operational mode for the front－panel 8－position switcher．
Note－this switcher may be assigned to control：
Utility buss switching（see＂Utility busses menus）
4－source router cards（optional boards required）
4sqwack box cards（optional boards required）

## Warning

Changing switch selections will cancel all Main／Alt Eight Switch Routing Selections


## Screen \＃3 Eight Position Switch Setup Warning

Alert screen which appears after every selection change to the Eight Position Switch Set－Up screen to advise that the Utility buss switching set－up has been cancelled and must be re－set．This is done as a precaution since some main／alt buss switch－ ing relies on the operating mode of the 8－position switcher．

## 7 Millenium-D Control Software - [Output Levels]

Select Console Channel Settings Output Levels Utility Buses Eight Position Switches Communicate Com Port Help
Communications
This pull-down menu contains item selections which configure PC communications with the console including:
1- Select console ID\#
2- Console serial port termination
3- Factory presets proceed message

## Mange Console ID



Current Console ID is 1

## Select New ID

New Console ID will be 1
New Console ID will be 2
New Console ID will be 3

## Change ID

## Screen \#1 Change Console ID

Select a unique console ID.
Default factory ID is 1 .
Multiple consoles should be numbered sequentially.
This option allows a single PC to be serially connected to multiple Millenium-D consoles and is only valid / required in a multi Millenium-D console installation.

## Millenium-D Control Software

Select which elements to reset to factory presets.


## Screen \#3 Factory Presets Proceed

Caution screen to proceed to Factory Presets screen

4- Factory presets restore (selective)

## M Serial Port Termination

Terminate only the last console in a chain.

## $\Gamma$ Main Serial Port

$\Gamma$ Auxiliary Serial Port

## Screen \#2 Serial Port Termination

Electronically terminate the last (or only) console serial port in the serial port chain.
Note - Default is main serial port terminated.

| M Return to Factory Presets |  | x |
| :---: | :---: | :---: |
| $\ulcorner$ Input A Level Trims | $\ulcorner$ Output Levels |  |
| $\ulcorner$ Input B Level Trims |  |  |
| $\ulcorner$ PreFader Levels | $\ulcorner$ Main Utility Buses |  |
| $\Gamma$ Cue Exclusive | $\Gamma$ Alt Utility Buses |  |
| $\ulcorner$ Serial Port Termination | $\Gamma$ Utility Bus Main/Alt Routing Select <br> $\Gamma$ Eight Position Switch Setup |  |
| Proceed |  |  |

## Screen \#4 Return to Factory Presets (Selective)

Selectable select any group of presets to be reset to factory default settings.
Note 1 - All screens pictured in the software description section are shown in default modes.

Note 2 - If no boxes are checked, "proceed" button will have no effect on software selections.

Note 3 - When the "proceed" button is pressed, it will change to "wait," and then revert again to "proceed" once all changes are saved.

## M Millenium-D Control Software - [0utput Levels]

Select Console Channel Settings Output Levels Utility Buses Eight Position Switches Communicate Com Port Help

## Serial Communication Port

This pull-down menu contains item selections that set the PC COM Port incluing:

1- Serial COM Port set
2- Serial COM port error message


## Screen \#1 COM Port Selection

Select the PC COM port you are using to communicate with the console
Note - Defualt is PC COM port \#1

## M Millenium-D Control Software - [0utput Levels]

Select Console Channel Settings Output Levels Utility Buses Eight Position Switches Communicate Com Port Help

## Help Screens

This pull-down menu contains help and informational screens including:
1 - "Help About" software version information


2 - Help messages
Screen \#1 About Millenium D Select to view software version information.

Automatically updated when new software revisions are installed.


[^0]:    * These functions require programming on the input control card. See preceding page for details.
    ** "Memory Recall" engages the channel powerup of stored channel functions. See manual section 2.2.1 for details. Control inputs to the console (pins $1,2,5 \& 12$ ) require a momentary contact to ground to activate. Lamp Control inputs to the console (pins 6 \& 13) require a holding contact to ground to activate.
    Control outputs from the console (pins $3,4,7 \& 11$ ) are open collector lines which go low (to ground) when activated.
    The cough button (pin 8) requires a holding connection to +15 volts (pin 15) for the duration of the function.

[^1]:    *Note: Connect to pin 5 for Mute 1 Control Connect to pin 4 for Mute 2 Control

